PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Immunological Computation for Protein Function Prediction

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Immunological computation is one of the largest recent bio-inspired approaches of artificial intelligence. Artificial immune systems (AIS) are inspired by the processes of the biological immune systems like the learning and memory characteristics which are used for solving complex problems. During the last two decades, AIS have been applied in various fields such as optimization, network security and data mining. In this article, we focus on the application of AIS to data mining in bioinformatics, more specifically, the classification task. For this purpose, we suggest three immune models based on clonal selection theory for the identification of G-protein coupled receptors (GPCRs) to predict their function. Our three classifiers are the artificial immune recognition system (AIRS), the clonal selection algorithm (CLONALG) and the clonal selection classification algorithm (CSCA). The GPCRs represent one of the largest and most important families of multifunctional proteins and are a significant target for bioactive and drug discovery programs. It is estimated that more than half of the drugs on the market currently target GPCRs. However, although thousands of GPCRs sequences are known, many of them remain orphans, have unknown function. Our experiments show that the three immunological classifiers have provided interesting results, however, AIRS obtained the best ones. Therefore, it is, for us, the most suitable immune model for the GPCRs identification problem.
Wydawca
Rocznik
Strony
91--114
Opis fizyczny
Bibliogr. 79 poz., rys., tab.
Twórcy
autor
  • LISCO Laboratory, LabGED Laboratory Department of Computer Science Badji Mokhtar–Annaba University, Annaba, Algeria
autor
  • LBBM Laboratory, Department of Biochemistry Badji Mokhtar–Annaba University, Annaba, Algeria
  • LISCO Laboratory, Department of Computer Science Badji Mokhtar–Annaba University, Annaba, Algeria
Bibliografia
  • [1] Aickelin, U., Cayzer, S.: The danger theory and its application to artificial immune systems, arXiv preprint arXiv:0801.3549, 2008.
  • [2] Aickelin, U., Greensmith, J.: Sensing danger: Innate immunology for intrusion detection, Information Security Technical Report, 12(4), 2007, 218–227.
  • [3] Aitkin, J., et al.: The Online Home of Artificial Immune Systems, http://www.artificial-immune-systems.org/.
  • [4] Al-Enezi, J., Abbod, M., Alsharhan, S.: Artificial Immune Systems-models, algorithms and applications, algorithms and applications, 2010.
  • [5] Alem, K., Louhichi, A., Ladjama, A., Reba¨ı, A.: In silico investigation of intronless Rhodopsin-like Gprotein coupled receptors (GPCR) in the human genome: features and classification., Archives de l’Institut Pasteur de Tunis, 84(1-4), 2006, 57–63.
  • [6] Alves, R. T., Delgado, M., Freitas, A. A.: Knowledge discovery with Artificial Immune Systems for hierarchical multi-label classification of protein functions., FUZZ-IEEE, 2010.
  • [7] Alves, R. T., Delgado, M. R., Freitas, A. A.: Multi-label hierarchical classification of protein functions with artificial immune systems, in: Advances in Bioinformatics and Computational Biology, Springer, 2008, 1–12.
  • [8] Bevilacqua, V., Menolascina, F., Alves, R. T., Tommasi, S., Mastronardi, G., Delgado, M., Paradiso, A., Nicosia, G., Freitas, A. A.: Artificial immune systems in Bioinformatics, in: Computational Intelligence in Biomedicine and Bioinformatics, Springer, 2008, 271–295.
  • [9] Bjarnadóttir, T. K., Gloriam, D. E., Hellstrand, S. H., Kristiansson, H., Fredriksson, R., Schiöth, H. B.: Comprehensive repertoire and phylogenetic analysis of the G protein-coupled receptors in human and mouse, Genomics, 88(3), 2006, 263–273.
  • [10] Brownlee, J.: Artificial immune recognition system (airs)-a review and analysis, Center for Intelligent Systems and Complex Processes (CISCP), Faculty of Information and Communication Technologies (ICT), Swinburne University of Technology, Victoria, Australia, 2005.
  • [11] Brownlee, J.: Clonal Selection Theory & CLONALG–The Clonal Selection Classification Algorithm (CSCA), Swinburne University of Technology, 2005.
  • [12] Burnet, S. F. M., et al.: The clonal selection theory of acquired immunity, University Press Cambridge, 1959.
  • [13] Chandonia, J. M., et al.: ASTRAL SCOP database, http://astral.berkeley.edu/.
  • [14] Cho, K. C., Park, D. H.,Ma, Y. B., Lee, J. S.: Optimal clustering-basedART1 classification in bioinformatics: g-protein coupled receptors classification, in: Advances in Natural Computation, Springer, 2006, 588–597.
  • [15] Chou, K.-C.: Prediction of protein cellular attributes using pseudo-amino acid composition, Proteins: Structure, Function, and Bioinformatics, 43(3), 2001, 246–255.
  • [16] Chou, K.-C.: Prediction of G-protein-coupled receptor classes, Journal of Proteome Research, 4(4), 2005, 1413–1418.
  • [17] Chou, K.-C.: Using amphiphilic pseudo amino acid composition to predict enzyme subfamily classes, Bioinformatics, 21(1), 2005, 10–19.
  • [18] Chou, K.-C.: Pseudo amino acid composition and its applications in bioinformatics, proteomics and system biology, Current Proteomics, 6(4), 2009, 262–274.
  • [19] Chou, K.-C., Elrod, D. W.: Bioinformatical analysis of G-protein-coupled receptors, Journal of proteome research, 1(5), 2002, 429–433.
  • [20] Cobanoglu,M. C., Saygin, Y., Sezerman, U.: Classification of GPCRs using family specific motifs, Computational Biology and Bioinformatics, IEEE/ACM Transactions on, 8(6), 2011, 1495–1508.
  • [21] Correa, E. S., Freitas, A. A., Johnson, C. G.: Particle swarm and bayesian networks applied to attribute selection for protein functional classification, Proceedings of the 9th annual conference companion on Genetic and evolutionary computation, ACM, 2007.
  • [22] Costa, E. P., Lorena, A. C., Carvalho, A. C., Freitas, A. A.: Top-down hierarchical ensembles of classifiers for predicting g-protein-coupled-receptor functions, in: Advances in Bioinformatics and Computational Biology, Springer, 2008, 35–46.
  • [23] Costa, E. P., Lorena, A. C., Carvalho, A. C., Freitas, A. A., Holden, N.: Comparing several approaches for hierarchical classification of proteins with decision trees, in: Advances in Bioinformatics and Computational Biology, Springer, 2007, 126–137.
  • [24] Cutello, V., Morelli, G., Nicosia, G., Pavone, M., Scollo, G.: On discrete models and immunological algorithms for protein structure prediction, Natural Computing, 10(1), 2011, 91–102.
  • [25] Cutello, V., Nicosia, G., Pavone, M., Prizzi, I.: Protein multiple sequence alignment by hybrid bio-inspired algorithms, Nucleic acids research, 39(6), 2011, 1980–1992.
  • [26] Cutello, V., Nicosia, G., Pavone, M., Timmis, J.: An immune algorithm for protein structure prediction on lattice models, Evolutionary Computation, IEEE Transactions on, 11(1), 2007, 101–117.
  • [27] Dasgupta, D.: Advances in artificial immune systems, Computational intelligence magazine, IEEE, 1(4), 2006, 40–49.
  • [28] Dasgupta, D., Nino, F.: Immunological computation: theory and applications, CRC Press, 2008.
  • [29] Davies, M. N., Secker, A., Freitas, A. A., Mendao, M., Timmis, J., Flower, D. R.: On the hierarchical classification of G protein-coupled receptors, Bioinformatics, 23(23), 2007, 3113–3118.
  • [30] Davies N, M., E Gloriam, D., Secker, A., A Freitas, A., Timmis, J., R Flower, D.: Present perspectives on the automated classification of the G-protein coupled receptors (GPCRs) at the protein sequence level, Current topics in medicinal chemistry, 11(15), 2011, 1994–2009.
  • [31] De Castro, L. N., Von Zuben, F. J.: The clonal selection algorithmwith engineering applications, Proceedings of GECCO, 2000, 2000.
  • [32] De Castro, L. N., Von Zuben, F. J.: Learning and optimization using the clonal selection principle, Evolutionary Computation, IEEE Transactions on, 6(3), 2002, 239–251.
  • [33] Forrest, S., Perelson, A. S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer, 2012 IEEE Symposium on Security and Privacy, IEEE Computer Society, 1994.
  • [34] Greensmith, J., Aickelin, U., Twycross, J.: Articulation and clarification of the dendritic cell algorithm, in: Artificial Immune Systems, Springer, 2006, 404–417.
  • [35] Gu, Q., Ding, Y.: Binary particle swarm optimization based prediction of G-protein-coupled receptor families with feature selection, Proceedings of the first ACM/SIGEVO Summit on Genetic and Evolutionary Computation, ACM, 2009.
  • [36] Holden, N., Freitas, A. A.: Hierarchical classification of G-protein-coupled receptors with a PSO/ACO algorithm, Proceedings of the IEEE Swarm Intelligence Symposium (SIS’06), IEEE Press, 2006.
  • [37] Holden, N., Freitas, A. A.: Hierarchical classification of protein function with ensembles of rules and particle swarm optimisation, Soft Computing, 13(3), 2009, 259–272.
  • [38] Huang, Y., Cai, J., Ji, L., Li, Y.: Classifying G-protein coupled receptors with bagging classification tree, Computational biology and chemistry, 28(4), 2004, 275–280.
  • [39] Huang, Y., Niu, B., Gao, Y., Fu, L., Li, W.: CD-HIT Suite: a web server for clustering and comparing biological sequences, Bioinformatics, 26(5), 2010, 680–682.
  • [40] Kihara, D., Hawkins, T., Luban, S., Li, B., Ramani, K., Agrawal, M.: Protein Function Prediction in Proteomics Era, in: Frontiers of Computational Science, Springer, 2007, 143–148.
  • [41] Kobilka, B., Lefkowitz, R.: Studies of G–Protein Coupled Receptors, Scientific Background on the Nobel Prize in Chemistry, 2012.
  • [42] Kolakowski Jr, L. F.: GCRDb: a G-protein-coupled receptor database., Receptors & channels, 2(1), 1993, 1–7.
  • [43] Layeb, A., Deneche, A. H.: Multiple sequence alignment by immune artificial system, Computer Systems and Applications, 2007. AICCSA’07. IEEE/ACS International Conference on, IEEE, 2007.
  • [44] Lin, H.-C., Su, C.-T., Wang, P.-C.: An application of artificial immune recognition system for prediction of diabetes following gestational diabetes, Journal of medical systems, 35(3), 2011, 283–289.
  • [45] Matzinger, P.: Tolerance, danger, and the extended family, Annual review of immunology, 12(1), 1994, 991–1045.
  • [46] Meng, L., van der Putten, P., Wang, H.: A comprehensive benchmark of the artificial immune recognition system (AIRS), in: Advanced Data Mining and Applications, Springer, 2005, 575–582.
  • [47] Naveed, M., Khan, A. U.: GPCR-MPredictor: multi-level prediction of G protein-coupled receptors using genetic ensemble, Amino acids, 42(5), 2012, 1809–1823.
  • [48] Nowling, R. J., Abrudan, J. L., Shoue, D. A., Abdul-Wahid, B., Wadsworth, M., Stayback, G., Collins, F. H., McDowell, M. A., Izaguirre, J. A.: Identification of novel arthropod vector G protein-coupled receptors, BioMed Central, 6, 2013, 150–165.
  • [49] Oliveira, L. O. V. B., Mota, R. L. M., Barone, D. A. C.: Clonal selection classifier with data reduction: Classification as an optimization task, Evolutionary Computation (CEC), 2012 IEEE Congress on, IEEE, 2012.
  • [50] Peng, Z.-L., Yang, J.-Y., Chen, X.: An improved classification of G-protein-coupled receptors using sequence-derived features, BMC bioinformatics, 11(1), 2010, 420.
  • [51] Qing-guang, C., Wei-li, D., Guo-hua, C., Guang-sheng, H.: Review and expectation of application of the mechanism of the biological immune system in work safety management, Procedia Engineering, 11, 2011, 18–26.
  • [52] Qiu, J.-D., Huang, J.-H., Liang, R.-P., Lu, X.-Q.: Prediction of G-protein-coupled receptor classes based on the concept of Chous pseudo amino acid composition: an approach from discrete wavelet transform, Analytical biochemistry, 390(1), 2009, 68–73.
  • [53] Rehman, Z., Khan, A.: G-protein-coupled receptor prediction using pseudo-amino-acid composition and multiscale energy representation of different physiochemical properties, Analytical biochemistry, 412(2), 2011, 173–182.
  • [54] Rehman, Z.-u., Muhammad Tayyeb, M., Asifullah, K., Henri, X.: Predicting G-Protein-Coupled Receptors Families using Different Physiochemical Properties and Pseudo Amino Acid Composition, vol. 522, chapter chapter four, Elsevier, 2013, 61–79.
  • [55] Sahu, S. S., Panda, G., Nanda, S. J.: Improved protein structural class prediction using genetic algorithm and artificial immune system, Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on, IEEE, 2009.
  • [56] Secker, A., Davies, M. N., Freitas, A. A., Clark, E., Timmis, J., Flower, D. R.: Hierarchical classification of G-Protein-Coupled Receptors with data-driven selection of attributes and classifiers, International journal of data mining and bioinformatics, 4(2), 2010, 191–210.
  • [57] Secker, A., Davies,M. N., Freitas, A. A., Timmis, J., Clark, E., Flower, D. R.: An artificial immune systemfor evolving amino acid clusters tailored to protein function prediction, in: Artificial Immune Systems, Springer, 2008, 242–253.
  • [58] Secker, A., Davies,M. N., Freitas, A. A., Timmis, J., Clark, E., Flower, D. R.: An artificial immune systemfor clustering amino acids in the context of protein function classification, Journal of Mathematical Modelling and Algorithms, 8(2), 2009, 103–123.
  • [59] Secker, A. D., Davies, M. N., Freitas, A. A., Timmis, J., Mendao, M., Flower, D. R.: An experimental comparison of classification algorithms for hierarchical prediction of protein function, Expert Update (Magazine of the British Computer Society’s Specialist Group on AI), 9(3), 2007, 17–22.
  • [60] Selzer, P., Ertl, P.: Identification and Classification of GPCR Ligands Using Self-Organizing Neural Networks, QSAR & Combinatorial Science, 24(2), 2005, 270–276.
  • [61] Sengur, A.: Prediction of Protein Cellular Localization Sites Using a Hybrid Method Based on Artificial Immune System and Fuzzy k-NN Algorithm, Digit. Signal Process., 19(5), September 2009, 815–826, ISSN 1051-2004.
  • [62] Sharma, A., Sharma, D.: Clonal selection algorithm for classification, in: Artificial Immune Systems, Springer, 2011, 361–370.
  • [63] Shen, H.-B., Chou, K.-C.: PseAAC: a flexible web server for generating various kinds of protein pseudo amino acid composition, Analytical biochemistry, 373(2), 2008, 386–388.
  • [64] Siehler, S., Milligan, G.: G Protein-Coupled Receptors: Structure, Signaling, and Physiology, Cambridge University Press, 2010.
  • [65] Sree, P. K., Babu, I. R., Murty, J., Rao, P. S.: Towards an artificial immune system to identify and strengthen protein coding region identification using cellular automata classifier, Intl. J. Comput. Commun, 1(2), 2007, 26–34.
  • [66] Thiriet,M.: Signaling at the Cell Surface in the Circulatory and Ventilatory Systems, vol. 3, Springer Science & Business Media, 2011.
  • [67] Timmis, J., Edmonds, C.: A comment on opt-AiNET: an immune network algorithm for optimisation, Genetic and Evolutionary Computation, Springer, 2004.
  • [68] Turkoglu, I., Kaymaz, E. D.: A hybrid method based on artificial immune system and k-NN algorithm for better prediction of protein cellular localization sites, Applied Soft Computing, 9(2), 2009, 497–502.
  • [69] Twycross, J., Aickelin, U.: Biological inspiration for artificial immune systems, in: Artificial immune systems, Springer, 2007, 300–311.
  • [70] Ulutas, B. H., Kulturel-Konak, S.: A review of clonal selection algorithm and its applications, Artificial Intelligence Review, 36(2), 2011, 117–138.
  • [71] Vroling, B., Sanders, M., Baakman, C., Borrmann, A., Verhoeven, S., Klomp, J., Oliveira, L., de Vlieg, J., Vriend, G.: GPCRDB: information system for G protein-coupled receptors, Nucleic acids research, 2010, gkq1009.
  • [72] Watkins, A.: AIRS: A Resource Limited Artificial Immune Classifier, Ph.D. Thesis, Department of Computer Science, Mississippi State University, 2001.
  • [73] Watkins, A., Timmis, J.: Artificial immune recognition system (AIRS): Revisions and refinements, AISB 2004 Convention, 2004.
  • [74] Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., Church, D. M., DiCuccio, M., Edgar, R., Federhen, S., et al.: Database resources of the national center for biotechnology information, Nucleic acids research, 35(suppl 1), 2007, D5–D12.
  • [75] Witten, I. H., Frank, E.: Data Mining: Practical machine learning tools and techniques, Morgan Kaufmann, 2005.
  • [76] Xiao, X.,Wang, P., Chou, K.-C.: GPCR-CA: A cellular automaton image approach for predicting G-protein–coupled receptor functional classes, Journal of computational chemistry, 30(9), 2009, 1414–1423.
  • [77] Xiao, X., Wang, P., Chou, K.-C.: GPCR-2L: Predicting G protein-coupled receptors and their types by hybridizing two different modes of pseudo amino acid compositions, Molecular Biosystems, 7(3), 2011, 911–919.
  • [78] Zekri, M., Alem, K., Souici-Meslati, L.: Identification Methods of G Protein-Coupled Receptors, International Journal of Knowledge Discovery in Bioinformatics (IJKDB), 2(4), 2011, 35–52.
  • [79] Zheng, J., Chen, Y., Zhang, W.: A Survey of artificial immune applications, Artificial Intelligence Review, 34(1), 2010, 19–34.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4b088db-5dcd-4f73-b07a-dff30c901c10
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.