Powiadomienia systemowe
- Sesja wygasła!
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We show an iterated function of which iterates oscillate wildly and grow at a dizzying pace. We conjecture that the orbit of arbitrary positive integer always returns to 1, as in the case of the Collatz function. The conjecture is supported by a heuristic argument and computational results.
Słowa kluczowe
Rocznik
Tom
Strony
143--147
Opis fizyczny
Bibliogr. 8 poz., rys.
Twórcy
autor
Bibliografia
- [1] J.C. Lagarias, The 3x + 1 problem: An annotated bibliography (1963– 1999), sorted by author, arXiv: math/0309224 (2003).
- [2] J.C. Lagarias, The 3x + 1 problem: An annotated bibliography, II (2000-2009), arXiv: math/0608208 (2006).
- [3] T. Tao, The Collatz conjecture, Littlewood-Offord theory, and powers of 2 and 3 (2011), https://terrytao.wordpress.com/2011/08/25/the-collatz-conjecture-littlewood-offord-theory-and-powers-of-2-and-3/.
- [4] J.C. Lagarias, The 3x + 1 problem and its generalizations, The American Mathematical Monthly 92(1), 3–23 (1985).
- [5] R.E. Crandall, On the “3x + 1” problem, Mathematics of Computation 32(144), 1281–1292 (1978).
- [6] M.V.P. Garcia, F.A. Tal, A note on the generalized 3n + 1 problem, Acta Arithmetica 90(3), 245–250 (1999).
- [7] F. Mignosi, On a generalization of the 3x + 1 problem, Journal of Number Theory 55(1), 28–45 (1995).
- [8] K.R. Matthews, Generalized 3x + 1 mappings: Markov chains and ergodic theory, [In:] J.C. Lagarias (Ed.), The Ultimate Challenge: The 3x + 1 Problem, 79–103, AMS (2010).
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ae56a5-457d-4a2f-a849-357f7d06fb34