PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Impact of Coolant Water Flow Rate and Temperature Underside Cooling Slope on Solidification with Microstructure and Mechanical Properties of Casted AZ91 Mg Alloy

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Present study describes about the effect of coolant water flow rate and coolant water temperature underside cooling slope on structural characteristics of casted AZ91 Mg alloy. Here, over the cooling slope, hot melt flows from top to bottom. Additionally, under the cooling slope, coolant water flows from bottom to top. Slurry gets obtained at bottom of cooling slope by pouring AZ91 Mg melt from top of the slope. Coolant water flow rate with coolant water temperature underside cooling slope warrant necessary solidification and shear to obtain AZ91 Mg slurry. Specifically, slurry at 5 different coolant water flow rates (4, 6, 8, 10, 12 lpm) and at 5 different coolant water temperatures (15, 20, 25, 30, 35°C) underside cooling slope are delivered inside metal mould. Modest coolant water flow rate of 8 lpm with coolant water temperature of 25°C (underside cooling slope) results fairly modest solidification that would enormously contribute towards enhanced structural characteristics. As, quite smaller/bigger coolant water flow rate/temperature underside cooling slope would reason shearing that causes inferior structural characteristics. Ultimately, favoured microstructure was realized at 8 lpm coolant water flow rate and 25°C coolant water temperature underside cooling slope with grain size, shape factor, primary α-phase fraction and grain density of 63 µm, 0.71, 0.68 and 198, respectively. Correspondingly, superior mechanical properties was realized at 8 lpm coolant water flow rate and 25°C coolant water temperature underside cooling slope with tensile strength, elongation, yield strength and hardness of 250 MPa, 8%, 192 MPa and 80 HV, respectively.
Twórcy
autor
  • VSS University of Technology, Department of Production Engineering, Burla 768018, India
autor
  • VSS University of Technology, Department of Production Engineering, Burla 768018, India
Bibliografia
  • [1] G.W. Form, J.F. Wallace, Typical microstructure of cast metals, Trans. AFS. 68, 145-156 (1960).
  • [2] J. Campbell, Solidification technology in the foundry and cast-house, Metals Soc. 61-64 (1981).
  • [3] G.S. Cole, A.M. Sherman, Light weight materials for automotive applications, Mater. Charact. 35, 3-9 (1995).
  • [4] T.M. Yue, G.A. Chadwick, Squeeze casting of light alloys and their composites, J. Mater. Process. Technol. 58, 302-307 (1996).
  • [5] E.M. Gutman, Ya. Unigovski, M. Levkovich, Z. Koren, E. Aghion, M. Dangur, Influence of technological parameters of permanent mold casting and die casting on creep and strength of Mg alloy AZ91D, Mater. Sci. Eng. A 234-236, 880-883 (1997).
  • [6] N.A.E. Mahallawy, M.A. Taha, E. Pokora, F. Klein, On the influence of process variables on the thermal conditions and properties of high pressure die-cast magnesium alloys, J. Mater. Process. Technol. 73, 125-138 (1998).
  • [7] J.C. Gebelin, M. Suery, D. Favier, Characterisation of the rheological behaviour in the semi-solid state of grain-refined AZ91 magnesium alloys, Mater. Sci. Eng. A 272, 134-144 (1999).
  • [8] P.J. Blau, M. Walukas, Sliding friction and wear of magnesium alloy AZ91D produced by two different methods, Tribol. Int. 33, 573-579 (2000).
  • [9] T. Haga, S. Suzuki, Casting of aluminum alloy ingots for thixoforming using a cooling slope, J. Mater. Process. Technol. 118, 169-172 (2001).
  • [10] Z. Fan, Semisolid metal processing, Int. Mater. Rev. 47, 49-85 (2002).
  • [11] F. Czerwinski, Assessing capabilities of thixomolding system in semisolid processing of magnesium alloys, Int. J. Cast Met. Res. 16, 389-396 (2003).
  • [12] A. Muumbo, H. Nomura, M. Takita, Casting of semi-solid cast iron slurry using combination of cooling slope and pressurisation, Int. J. Cast Met. Res. 17, 39-46 (2004).
  • [13] Z. Fan, Development of the rheo-diecasting process for magnesium alloys, Mater. Sci. Eng. A 413-414, 72-78 (2005).
  • [14] P. Zhao, H. Geng, Q. Wang, Effect of melting technique on the microstructure and mechanical properties of AZ91 commercial magnesium alloys, Mater. Sci. Eng. A 429, 320-323 (2006).
  • [15] Y. Birol, A357 thixoforming feedstock produced by cooling slope casting, J. Mater. Process. Technol. 186, 94-101 (2007).
  • [16] E.C. Legoretta, H.V. Atkinson, H. Jones, Cooling slope casting to obtain thixotropic feedstock II: observations with A356 alloy, J. Mater. Sci. 43, 5456-5469 (2008).
  • [17] X.R. Yang, W.M. Mao, C. Gao, Semisolid A356 alloy feedstock poured through a serpentine channel, Int. J. Miner. Metall. Mater. 16, 603-607 (2009).
  • [18] T. Haga, R. Nakamura, R. Tago, H. Watari, Effects of casting factors of cooling slope on semisolid condition, Trans. Nonferrous Met. Soc. China 20, 968-972 (2010).
  • [19] X.R. Yang, W.M. Mao, B.Y. Sun, Preparation of semisolid A356 alloy slurry with larger capacity cast by serpentine channel, Trans. Nonferrous Met. Soc. China 21, 455-460 (2011).
  • [20] R.G. Guan, Z.Y. Zhao, F.R. Cao, C. Lian, C.S. Lee, C.M. Liu, Effects of process parameters on microstructure and properties of AZ91 alloy prepared by cooling/stirring and rolling process, Int. J. Cast Met. Res. 25, 225-231 (2012).
  • [21] Z.Y. Zhao, R.G. Guan, Q.S. Zhang, C.G. Dai, C.S. Lee, C.M. Liu, Temperature distribution and its influence on microstructure of alloy AZ31 during semisolid rheo-rolling process, Int. J. Cast Met. Res. 26, 247-254 (2013).
  • [22] N.K. Kund, P. Dutta, Numerical study of solidification of A356 aluminum alloy flowing on an oblique plate with experimental validation, J. Taiwan Inst. Chem. Engrs. 51, 159-170 (2015).
  • [23] N.K. Kund, P. Dutta, Numerical study of influence of oblique plate length and cooling rate on solidification and macrosegregation of A356 aluminum alloy melt with experimental comparison, J. Alloys Compd. 678, 343-354 (2016).
  • [24] R.G. Guan, Z.Y. Zhao, Y.D. Li, T.J. Chen, S.X. Xu, P.X. Qi, Microstructure and properties of squeeze cast A356 alloy processed with a vibrating slope, J. Mater. Process. Tech. 229, 514-519 (2016).
  • [25] A.M. Negm, S.A. Abdallah, M. Ibrahim, T.S. Mahmoud, Cooling slope casting of cast iron, Mater. Sci. Eng. Technol. 48, 1103-1112 (2017).
  • [26] Y. Li, R. Zhou, L. Li, H. Xiao, Y. Jiang, Microstructure and properties of semi-solid ZCuSn10P1 alloy processed with an enclosed cooling slope channel, Metals 8, 275 (2018).
  • [27] A. Kolahdooz, S.A. Dehkordi, Effects of important parameters in the production of Al-A356 alloy by semi-solid forming process, J. Mater. Res. Technol. 8, 189-198 (2019).
  • [28] S. Acar, K.A. Guler, Producing non-dendritic A356 and A380 feedstocks: evaluation of the effects of cooling slope casting parameters, Mater. Test. 62, 1147-1152 (2020).
  • [29] M.M. Shehata, S.E. Hadad, M.E. Moussa, M.E. Shennawy, Optimizing the pouring temperature for semisolid casting of a hypereutectic Al-Si alloy using the cooling slope plate method, Int. J. Metalcast. 15, 488-499 (2021).
Uwagi
The financial support received from Ministry of Mines, TIFAC and DST (SAP-9162) is gratefully acknowledged.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4ae35a4-a117-4446-acf3-7d263ce93ec8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.