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Summary: In a fundamental book [5] on the so-called network calculus and research 
papers using this technique, as for example those cited in this paper, the notion of 
causal linear time-invariant teletraffic systems (networks) is used. It has been 
mentioned in [5] that these systems are analogous to the causal linear time-invariant 
systems (circuits) described by integral convolution (or convolution sum in the case of 
discrete ones) in classical systems theory. Note that networks considered in the 
network calculus are described by other type of convolution that uses the infimum 
operation. Moreover, the algebra used in the above technique is also different. This is 
the so-called min-plus (or max-plus) algebra. Therefore, it is not obvious that the 
teletraffic systems (networks) described by the infimum convolution fulfill the 
following basic properties: linearity, causality, time-invariance, associativity and 
commutativity of their convolution operator, known from the classical theory of 
systems. The objective of this paper is to prove or show in detail that the above 
properties hold.  

Keywords: Network calculus, basic properties of teletraffic systems, linearity, causality, 
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1. INTRODUCTION 

Consider teletraffic system (network) which can be described by means of 
the so-called Network Calculus [5]. Central to the theory is the use of alternate 
algebras such as min-plus algebra and max-plus algebra to transform complex 
network systems into analytically tractable systems [4]. Many detailed 
examples can be found in the literature, as for example, in [1, 2, 3, 6]. The 
description of this system is in form of a black box, as depicted in Fig. 1, 
relating its output traffic  with its input traffic  through the service 
curve  (corresponding to the system impulse response in the classical 
systems theory dealing with analog or digital signals). 
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Fig. 1. A teletraffic system (network) input-output model via a black box characterized 

by a service curve  

The input and output traffics  and , respectively, are the functions 
of time variable . They have the meaning of the cumulative traffic (sums of the 
bits (packets) arrived in the period from  to ). When the relation between  
and  has the form 

 (1)  

where  means the mathematical operation of taking infimum value, then a 
system described by it is called a causal linear time-invariant one [5]. However, 
to our best knowledge, there is a lack of evidence in the literature, including [5], 
that a system described by (1) really fulfills the properties of linearity, causality 
and time-invariance. This paper fills the above gap. Besides, we show here how 
the properties mentioned look like in the case of linear systems described by an 
integral convolution – for reference and comparison. Finally, we compare the 
forms of associativity and commutativity properties of systems described by 
convolutions integral with those involving infimum operation. 

2. LINEARITY PROPERTY 

Let take into account a system described by an integral convolution of the 
form 

 

 
(2) 

where  and  represent the output and input to the system, respectively, 
and  is the so-called impulse response of this system. The description by (2) 
(as shown there) can be also expressed in the operator form 

 with  meaning the integral convolution operator. The system 
represented by (2) is linear when it fulfills the following relation 

(3) 

where  and  are some real numbers. Moreover,  and  are two input 
signals, and  and  are the corresponding output ones. 

Using  (2) gives  



Comparison of descriptions of continuous-time and teletraffic systems 7 

 

 
(4) 

That is the linearity condition (3) is fulfilled (meaning that the systems 
described by integral convolutions are linear). 

Consider now the systems described by (1), which is also named as 
infimum convolution. In this case, the algebra used is also defined differently. It 
is named min-plus algebra. In this algebra, the operation infimum stands for 
addition in the standard algebra, but the addition, on the other hand, replaces 
multiplication of standard algebra; for more details, see for example [5]. 
Therefore, here, the condition of linearity, equivalent of (3), must be written as 

 

 

(5) 

where  and  and  and  are real numbers. 
The subscript  under  operation means calculation of the infimum (in this 
case minimum) in the set consisting of two elements. In the next step, we check 
whether (5) is satisfied in the case of  given by (1) or not. To this end, we 

substitute the signal  into (1). This gives 

 

 

 

 

(6) 

So the linearity condition (5) is fulfilled in the case of the  operator given by 
(1) and min-plus algebra. 

Note that in derivation of (6), we have exploited the fact that  is  
a constant in the inner expression there (second line) and interchange of  

operations,  with , according to the theorem 3.1.1. “Fubini” 

formula for infimum in [5]. 
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3. CAUSALITY 

The causality property in systems theory is defined as follows: Let be two 
input signals  and  satisfying  for all . Then the 
operator  describing a system is called causal if it satisfies 

(7) 

In the case of systems described by the convolution integral (2), we have 

 

 

 

 

 

(8) 

So, really, the condition (7) is fulfilled, meaning that the systems described 
by (2) are causal. 

Note that in derivation of (8) we have used the substitution  and 
the fact that  for . 

From the equality  for all , where now  and  
mean the input traffics, and relation (1), it follows immediately that 

 

 

(9) 

That is the teletraffic systems described by (1) are causal.  

4. TIME-INVARIANCE 

To define the time-invariance property, let us first introduce a delay 
operator  given by 

 (10) 
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for signals starting at  that is for which  for . in (10) 
means delaying the signal  by  seconds. 

Generally, we say that a system described by a  operator is time-invariant 
if the following: 

 (11) 

holds. 
Now, introducing the delayed signal  in (2), gives 

 

 

(12) 

because assumptions  and  for  follow that only the 
times  and  make sense. This leads to the upper limit in the 
integral  and . Otherwise, . Finally, we conclude that 
relation (12) proves the time-invariance of systems described by the integral 
convolution (2). 

Consider now the teletraffic systems described by (1) and introduce there the 
delayed input traffic  (given by similar expression as (10)). We get then 

 (13) 

Furthermore, note that the restrictions regarding (13) are similar to those 
occurring in the previous case, that is  and . They lead to 
the upper limit  instead of  under the symbol  in (13) and the inequality 

. Otherwise, . So, from (13) we get 

 (14) 

which proves the time-invariance property of teletraffic systems described by (1). 

5. ASSOCIATIVITY AND COMMUTATIVITY OF INTEGRAL 
AND INFIMUM CONVOLUTION 

Associativity and commutativity of the integral convolution are very useful 
properties exploited in calculations. Let us recall their derivation here, 
especially, that the derivation of the first one is not obvious. 

We begin with the commutativity property, which proves immediately, 
when we apply the assumption  for , introduce a new variable 



10 A. Borys, M. Aleksiewicz 

, rename  as , and finally take into account the fact that  
 for . In effect, we get from (2) 

 

 

 

(15) 

Consider now a cascade of two systems characterized by their impulse 
responses  and  as depicted in Fig. 2, with  being the input signal 
to the cascade and the corresponding output signals  and . 

 
Fig. 2. A cascade of two systems for illustration of associativity property 

To proceed further, observe first that according to (15) the descriptions 

   and    

in our setting, are equivalent to each other. In what follows, we shall use the 
latter. So, for the cascade in Fig, 2, using additionally the commutativity 
property (15), we can write 

 

 

(16a) 

Associating  with  would give  

 (16b) 

and then it should be possible to express  as  
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 (16c) 

With  given by (16b). In what follows, we will answer whether the above is 
true. For this purpose, consider an area of iteration of the double iterated 
integral occurring in (16a). It is illustrated in Fig. 3, and follows from the fact in 
our setting ,  and  for all . This gives 

. 

 
Fig. 3. The area of integration of an iterated integral in (16a) 

Introduction of a new variable  rearranges the set of inequalities 
 to  and , which describes a new 

area of integration (with  instead of ). This area is shown in Fig. 4. 

 
Fig. 4. The area of integration of an iterated integral in (16a) after introducing a new 

variable  instead of  
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Taking into account in (16a) the area of integration shown in Fig. 4, we 
arrive at 

 

 

(17) 

Further, we deduce from (17) that, really, the output signal  can be 
expressed as in (16c) with  given by (16b). And this finally proves the 
associativity property of the integrated convolution given by (2). 

Consider now the question of commutativity of the infimum convolution 
defined in (1). Introducing in (1) a new variable  gives 

 

 
(18) 

 

with  renamed as  in the last equality in (18). Looking at (18), we see that, 
really, the infimum convolution is commutative.  

To show that the associativity property holds in the case of infimum 
convolution we need to prove first the following theorem. 

Theorem 1. Let  be a set consisting of pairs of  and 
let  and  be subsets of  chosen such that  or , 
respectively, is constant. Then, the following 

 (19)  

holds, where  is a function of  and  belonging to the set . 

Proof. Using the notation introduce above ,we can write the range of the 
function  as range of  

 (20) 
 

Furthermore, note that 

 (21) 
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Applying now the infimum operation to the set given by (20) with (21), we 
obtain 

 

 

 (22a) 

or, similarly, 

  (22b) 

Therefore, we can conclude that the expressions on the most right-hand sides of 
(22a) and (22b) are equal each to other, and this constitutes the equality (19). 

Concluding, we say that one can interchange the subscripts  and  in the 
way as shown in (19), when performing infimum operation iteratively. 
Moreover, note that our theorem 1 is generalization of the theorem 3.1.1 
“Fubini” formula for infimum presented in [5] for any set consisting of two 
variables  and . 

Consider now a cascade of two teletraffic systems as shown in Fig. 5. 

 
Fig. 5. A cascade of two teletraffic systems for illustration of associativity property 

 

 

 

 

(23) 
 

Note that the last expression in (23) holds because  does not depend upon 
. Moreover, the commutativity property of the infimum convolution has been 

used in it. 
In the next step, we introduce a new variable  in (23). This 

leads to 
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(24) 
 

Note that the interchange of the subscript  and  under the infimum 
operations in (24) have been used, according to theorem 1. And finally, we 
conclude that (24) proves fulfillment of the associativity property by the 
infimum convolution. 

6. DIGITAL SIGNAL-BASED SYSTEMS 

The digital linear time-invariant causal systems are described by a sum 
convolution as 

   with  for  (25) 

in place of the integral convolution for time-continuous systems. In (25), 
 and  are the samples of the system impulse response, its output 

signal, and its input signal, respectively. Moreover,  means a discrete time. 
Also the systems characterized by (25) possess the properties we dealt with 

in the previous section. This can be easily shown using the approach applied 
before for analogous ones. 

7. CONCLUSION 

In this paper, we have analyzed systematically the basic properties of 
teletraffic systems that can be described by an infimum convolution. We have 
shown that these systems are linear, causal, and time-invariant. Moreover, their 
convolution operator fulfills the properties of associativity and commutativity. To 
our best knowledge, the derivations presented here have not been presented in 
the literature, at least in such a systematic form. For reference and comparison, 
we have also presented analogous derivations for systems of which input-output 
descriptions are in form of an integral convolution. 
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PORÓWNANIE OPISÓW SYSTEMÓW TELEINFORMATYCZNYCH 
ORAZ CI G YCH W CZASIE 

Streszczenie 

 W znanej monografii nt. rachunku sieciowego (network calculus), napisanej przez  
J.-Y. Le Boudeca i P. Thirana, zosta o wprowadzone poj cie liniowych systemów 
teleinformatycznych niezale nych od czasu. Wskazano w niej na podobie stwa 
istniej ce pomi dzy powy sz  klas  systemów a liniowymi systemami analogowymi 
niezale nymi od czasu, jednak e zrobiono to w sposób dosy  pobie ny. W tym artykule 
podobie stwa te s  przeanalizowane w sposób systematyczny, a tak e bez uciekania si  
do bardzo abstrakcyjnej teorii systemów opisywanych za pomoc  algebry min-plus – 
jedynie przy wykorzystaniu elementarnych poj  matematyki wy szej. Wiele 
przedstawionych tutaj wyprowadze  nie by o dotychczas nigdzie publikowanych, jak na 
przyk ad twierdzenie 1. 

S owa kluczowe: rachunek sieciowy (network calculus), liniowe i niezale ne od czasu 
systemy teleinformatyczne, w asno ci splotu w algebrze min-plus 

 

 


