PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Three-point bending of a beam with non-homogeneous structure in the depth direction

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper is devoted to the behavior of a non-homogeneous simply supported beam under three-point bending. The individual shear deformation function of a planar cross-section is adopted, and longitudinal displacements, strains, and stresses for two parts of the beam are explained. By applying the principle of stationary potential energy, a system of two differential equations of equilibrium is derived and solved analytically. The positions of the neutral axis, shear coefficients, and deflections are then calculated for three different beam families. Additionally, the bending problem of these beams is studied numerically using the finite element method (FEM). The results of both analytical and numerical calculations are presented in tables and figures. The main contribution of this paper lies in the development of an analytical model incorporating the individual shear deformation function and a numerical FEM model for this beam.
Rocznik
Strony
645--665
Opis fizyczny
Bibliogr. 31 poz., rys., tab., wykr.
Twórcy
  • Łukasiewicz Research Network – Poznan Institute of Technology Rail Vehicles Center Poznan, Poland
  • Institute of Mathematics, Poznan University of Technology Poznan, Poland
  • Łukasiewicz Research Network – Poznan Institute of Technology Rail Vehicles Center Poznan, Poland
  • Institute of Mathematics, Poznan University of Technology Poznan, Poland
Bibliografia
  • 1. Manjunatha B.S., Kant T., New theories for symmetric/unsymmetric composite and sandwich beams with C0 finite elements, Composite Structures, 23(1): 61–73, 1993, doi: 10.1016/0263-8223(93)90075-2.
  • 2. Reddy J.N., Analysis of functionally graded plates, International Journal of Numerical Methods in Engineering, 47(1–3): 663–684, 2000, doi: 10.1002/(SICI)1097-0207 (20000110/30)47:1/33.0.CO;2-8.
  • 3. Reddy J.N., Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, 2nd ed., CRC Press, Boca Raton, London, New York, Washington, 2004.
  • 4. Zenkour A.M., Generalized shear deformation theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, 30(1): 67–84, 2006, doi: 10.1016/ j.apm.2005.03.009.
  • 5. Altenbach H., Eremeyev V.A., Direct approach-based analysis of plates composed of functionally graded materials, Archive of Applied Mechanics, 78(10): 775–794, 2008, doi: 10.1007/s00419-007-0192-3.
  • 6. Shen H.S., Functionally Graded Materials: Nonlinear Analysis of Plates and Shells, CRC Press, Boca Raton, 2009.
  • 7. Carrera E., Brischetto S., A survey with numerical assessment of classical and refined theories for the analysis of sandwich plates, Applied Mechanics Reviews, 62(1): 010803, 2009, doi: 10.1115/1.3013824.
  • 8. Carrera E., Giunta G., Petrolo M., Beam Structures. Classical and Advanced Theories, John Wiley & Sons, Ltd., 2011.
  • 9. Lezgy-Nazargah M., Shariyat M., Beheshti-Aval S.B., A refined high-order globallocal theory for finite element bending and vibration analyses of laminated composite beams, Acta Mechanica, 217(3): 219–242, 2011, doi: 10.1007/s0070701003919.
  • 10. Weps M., Naumenko K., Altenbach H., Unsymmetric three-layer laminate with soft core for photovoltaic modules, Composite Structures, 105: 332–339, 2013, doi: 10.1016/ j.compstruct.2013.05.029.
  • 11. Zenkour A.M., A simple four-unknown refined theory for bending analysis of functionally graded plates, Applied Mathematical Modelling, 37(20–21): 9041–9051, 2013, doi: 10.1016/j.apm.2013.04.022.
  • 12. Magnucki K., Smyczyński M., Jasion P., Deflection and strength of a sandwich beam with thin binding layers between faces and a core, Archives of Mechanics, 65(4): 301–311, 2013.
  • 13. Chen D., Yang J., Kitipornchai S., Elastic buckling and static bending of shear deformable functionally graded porous beam, Composite Structures, 133: 54–61, 2015, doi: 10.1016/j.compstruct.2015.07.052.
  • 14. Sayyad A.S., Ghugal Y.M., Bending, buckling and free vibration of laminated composite and sandwich beams: a critical review of literature, Composite Structures, 171: 486–504, 2017, doi: 10.1016/j.compstruct.2017.03.053.
  • 15. Vo T.P., Thai H.-T., Nguyen T.-K., Lanc D., Karamanli A., Flexural analysis of laminated composite and sandwich beams using a four-unknown shear and normal deformation theory, Composite Structures, 176: 388–397, 2017, doi: 10.1016/j.compstruct.2017.05.041.
  • 16. Abrate S., Di Sciuva M., Equivalent single layer theories for composite and sandwich structures: a review, Composite Structures, 179: 482–494, 2017, doi: 10.1016/ j.compstruct.2017.07.090.
  • 17. Magnucka-Blandzi E., Kędzia P., Smyczyński M., Unsymmetrical sandwich beams under three-point bending – Analytical studies, Composite Structures, 202: 539–544, 2018, doi: 10.1016/j.compstruct.2018.02.086.
  • 18. Magnucki K., Lewiński J., Magnucka-Blandzi E., Kędzia P., Bending, buckling and free vibration of a beam with unsymmetrically varying mechanical properties, Journal of Theoretical and Applied Mechanics, 56(4): 1163–1178, 2018, doi: 10.15632/jtampl.56.4.1163.
  • 19. Magnucki K., Witkowski D., Magnucka-Blandzi E., Buckling and free vibrations of rectangular plates with symmetrically varying mechanical properties – Analytical and FEM studies, Composite Structures, 220: 355–361, 2019, doi: 10.1016/j.compstruct. 2019.03.082.
  • 20. Sayyad A.S., Ghugal Y.M., Modeling and analysis of functionally graded sandwich beams: A review, Mechanics of Advanced Materials and Structures, 26(21): 1776–1795, 2019, doi: 10.1080/15376494.2018.1447178.
  • 21. Meksi R., Benyoucef S., Mahmoudi A., Tounsi A., Bedia E.A.A., Mahmoud S.R., An analytical solution for bending, buckling and vibration responses of FGM sandwich plates, Journal of Sandwich Structures and Materials, 21(2): 727–757, 2019, doi: 10.1177/1099636217698443.
  • 22. Magnucki K., Magnucka-Blandzi E., Lewiński J., Milecki S., Analytical and numerical studies of an unsymmetrical sandwich beam – bending, buckling and free vibration, Engineering Transactions, 67(4): 491–512, 2019, doi: 10.24423/EngTrans.1015.20190725.
  • 23. Genovese D., Elishakoff I., Shear deformable rod theories and fundamental principles of mechanics, Archive of Applied Mechanics, 89(10): 1995–2003, 2019, doi: 10.1007/ s00419-019-01556-7.
  • 24. Magnucki K., Lewinski J., Magnucka-Blandzi E., Bending of two-layer beams under uniformly distributed load – Analytical and numerical FEM studies, Composite Structures, 235: 111777, 2020, doi: 10.1016/j.compstruct.2019.111777.
  • 25. Magnucki K., Lewinski J., Magnucka-Blandzi E., An improved shear deformation theory for bending beams with symmetrically varying mechanical properties in the depth direction, Acta Mechanica, 231(10): 4381–4395, 2020, doi: 10.1007/s00707-020-02763-y.
  • 26. Malikan M., Eremeyev V.A., A new hyperbolic-polynomial higher-order elasticity theory for mechanics of thick FGM beams with imperfection in the material composition, Composite Structures, 249: 112486, 2020, doi: 10.1016/j.compstruct.2020.112486.
  • 27. Malikan M., Eremeyev V.A., The effect of shear deformations’ rotary inertia on the vibrating response of multi-physics composite beam-like actuators, Composite Structures, 297: 115951, 2020, doi: 10.1016/j.compstruct.2020.115951.
  • 28. Sedighi H.M., Malikan M., Valipour A., Żur K.K., Nonlocal vibration of carbon/ boron-nitride nano-hetero-structure in thermal and magnetic fields by means of nonlinear finite element method, Journal of Computational Design and Engineering, 7(5): 591–602, 2020, doi: 10.1093/jcde/qwaa041.
  • 29. Masjedi P.K., Weaver P.M., Variable stiffness composite beams subject to non-uniformly distributed loads: An analytical solution, Composite Structures, 256: 112975, 2021, doi: 10.1016/j.compstruct.2020.112975.
  • 30. Garg A., Belarbi M.-O., Chalak H.D., Chakrabarti A., A review of the analysis of sandwich FGM structures, Composite Structures, 258: 113427, 2021, doi: 10.1016/ j.compstruct.2020.113427.
  • 31. Magnucki K., Magnucka-Blandzi E., Wittenbeck L., Three models of a sandwich beam: bending, buckling and free vibrations, Engineering Transactions, 70(2): 97–122, 2022, doi: 10.24423/EngTrans.1416.20220331
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4a5bda8-5c9b-47b9-9b63-b4dd5cbc400c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.