PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Stress field determination based on digital image correlation results

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this work was to determine the stress distribution during plastic deformation, based on the displacement field obtained using the digital image correlation (DIC) method. To achieve stress distribution, the experimentally measured displacement gradient and the elastoplastic material model with isotropic hardening were used. The proposed approach was implemented in the ThermoCorr program. The developed procedure was used to determine stress fields for uniaxial tension and simple shear processes, carried out on samples made of austenitic steel 304L. Both material parameters, such as the Young's modulus, Poisson's ratio, yield stress, and parameters of the hardening curve, were acquired experimentally. The macroscopic force obtained from the DIC-based stresses and its finite element analysis (FEA) equivalent were compared with that measured during the experi- ment. It was shown that the DIC-based approach gives more accurate results with respect to FEA, especially for a simple shear test, where FEA significantly overestimates the value of experimentally obtained macroscopic force.
Rocznik
Strony
1183--1193
Opis fizyczny
Bibliogr. 28 poz., rys., wykr.
Twórcy
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawinskiego 5B, 02-106 Warsaw, Poland
Bibliografia
  • [1] T.C. Chu, W.F. Ranson, M.A. Sutton, W.H. Peters, Applications of digital-image-correlation techniques to experimental mechanics, Exp. Mech. 25 (3) (1985) 232–244.
  • [2] M.A. Sutton, W.J. Wolters, W.H. Peters, W.F. Ranson, S.R. McNeill, Determination of displacements using an improved digital correlation method, Image Vis. Comput. 1 (3) (1983) 133–139.
  • [3] H.A. Bruck, S.R. McNeill, M.A. Sutton, W.H. Peters, Digital image correlation using Newton–Raphson method of partial differential correction, Exp. Mech. 29 (3) (1989) 261–267.
  • [4] J. Harvent, B. Coudrin, L. Brèthes, J.J. Orteu, M. Devy, Shape measurement using a new multi-step stereo-DIC algorithm that preserves sharp edges, Exp. Mech. 55 (1) (2015) 167–176.
  • [5] T. Gajewski, T. Garbowski, Calibration of concrete parameters based on digital image correlation and inverse analysis, Arch. Civil Mech. Eng. 14 (2014) 170–180.
  • [6] B. Pan, K. Qian, H. Xie, A. Asundi, Two-dimensional digital image correlation for in-plane displacement and strain measurement: a review, Meas. Sci. Technol. (2009), http:// dx.doi.org/10.1088/0957-0233/20/6/062001.
  • [7] C.C.B. Wang, N.O. Chahine, C.T. Hung, G.A. Ateshian, Optical determination of anisotropic material properties of bovine articular cartilage in compression, J. Biomech. 36 (3) (2003) 339–353.
  • [8] O. Orella, J. Vuorinena, J. Jokinena, H. Kettunenb, P. Hytönenb, J. Turunenb, M. Kanervaa, Characterization of elastic constants of anisotropic composites in compression using digital image correlation, Compos. Struct. 185 (2018) 176–185.
  • [9] Y. Cai, Q. Zhang, S. Yang, S. Fu, Y. Wang, Experimental study on three-dimensional deformation field of Portevin–Le Chatelier effect using digital image correlation, Exp. Mech. 56 (7) (2016) 1243–1255.
  • [10] N.A. Sène, P. Balland, K. Bouabdallah, Experimental study of Portevin–Le Châtelier bands on tensile and plane strain tensile tests, Arch. Civil Mech. Eng. 18 (1) (2018) 94–102.
  • [11] F. Hild, A. Bouterf, S. Roux, Damage measurements via DIC, Int. J. Fract. 191 (1–2) (2015) 77–105.
  • [12] M. Maj, W. Oliferuk, Analysis of plastic strain localization on the basis of strain and temperature fields, Arch. Metall. Mater. 57 (4) (2012) 1111–1116.
  • [13] J. Agirre, L. Galdos, E. Saenz de Argandoña, J. Mendiguren, Hardening prediction of diverse materials using the Digital Image Correlation technique, Mech. Mater. 124 (2018) 71–79.
  • [14] B.V. Farahani, J. Belinha, R. Amaral, P.J. Tavares, P. Moreira, A digital image correlation analysis on a sheet AA6061-T6 bifailure specimen to predict static failure, Eng. Fail. Anal. 90 (2018) 179–196.
  • [15] D. Gerbig, A. Bower, V. Savic, L.G. Hector Jr., Coupling digital image correlation and finite element analysis to determine constitutive parameters in necking tensile specimens, Int. J. Solids Struct. 97–98 (2016) 496–509.
  • [16] D.V. Nelson, A. Makino, T. Schmidt, Residual stress determination using hole drilling and 3D image correlation, Exp. Mech. 46 (2006) 31–38.
  • [17] J.D. Lord, D. Penn, P. Whitehead, The application of digital image correlation for measuring residual stress by incremental hole drilling, Appl. Mech. Mater. 13–14 (2008) 65–73.
  • [18] W. Oliferuk, M. Maj, K. Zembrzycki, Determination of the energy storage rate distribution in the area of strain localization using infrared and visible imaging, Exp. Mech. 55 (2015) 753–760.
  • [19] F. Toussaint, L. Tabourot, P. Vacher, Experimental study with a Digital Image Correlation (DIC) method and numerical simulation of an anisotropic elastic-plastic commercially pure titanium, Arch. Civil Mech. Eng. 8 (3) (2008) 131–143.
  • [20] S. Marth, H.-Å. Häggblad, M. Oldenburg, R. Östlund, Post necking characterisation for sheet metal materials using full field measurement, J. Mater. Process. Technol. 238 (2016) 315– 324.
  • [21] A. Brosius, N. Küsters, M. Lenzen, New method for stress determination based on digital image correlation data, CIRP Ann. Manuf. Technol. 67 (2018) 269–272.
  • [22] P.F. Luo, Y.J. Chao, M.A. Sutton, W.H. Peters, Accurate measurement of three-dimensional deformations in deformable and rigid bodies using computer vision, Exp. Mech. 33 (2) (1993) 123–132.
  • [23] B.K. Bay, T.S. Smith, D.P. Fyhrie, M. Saad, Digital volume correlation: three-dimensional strain mapping using X-ray tomography, Exp. Mech. 39 (3) (1999) 217–226.
  • [24] J.C. Simo, R.L. Taylor, A return mapping algorithm for plane stress elastoplasticity, Int. J. Numer. Methods Eng. 22 (1986) 649–670.
  • [25] M. Nowak, M. Maj, Determination of coupled mechanical and thermal fields using 2D digital image correlation and infrared thermography: numerical procedures and results, Arch. Civil Mech. Eng. 18 (2018) 630–644.
  • [26] S.P. Gadaj, W.K. Nowacki, E.A. Pieczyska, Changes of temperature during the simple shear test of stainless steel, Arch. Mech. 48 (4) (1996) 779–788.
  • [27] E.A. Pieczyska, S.P. Gadaj, W.K. Nowacki, J. Luckner, H. Tobushi, Martensite and reverse transformation during simple shear of NiTi shape memory alloy, Strain 45 (2009) 93–100.
  • [28] W. Oliferuk, M. Maj, Stress–strain curve and stored energy during uniaxial deformation of polycrystals, Eur. J. Mech. A-Solids 28 (2) (2009) 266–272.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4a14ff0-fa61-4f23-8fbf-1c2e399c7959
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.