PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of the Needle Number on the Heat Insulation Performance of Pre-oxidized Fibre Felts

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wpływ liczby igieł na izolację termiczną filców z włóknami preoksydowanymi
Języki publikacji
EN
Abstrakty
EN
Many factors were needed to be considered to prepare pre-oxidised fibre felts with excellent heat insulation performance, and different production processes showed differences in the heat insulation performance of pre-oxidised fibre felts. In order to probe into the influence of the production process on the heat insulation performance of materials, a large number of experiments were needed to be carried out. For needle-punched nonwoven pre-oxidised fibre felts, web features, needle characteristics and the needle process will all affect the structure of pre-oxidised fibre felts, thus bringing a major influence on the heat insulation performance of pre-oxidised fibre felts. In this paper, the influence of the needle number on the heat insulation performance of pre-oxidised fibre felts was mainly studied. Results showed that an increase in the needle number will cause a decrease in the thickness and gram weight of pre-oxidised fibre felts, and a weakening trend in the heat insulation performance of pre-oxidiaed fibre felts with an increasing needle number at room temperature and at 100-200 °C was shown. Moreover when the needle number was 1 and 2, the pre-oxidised fibre needled felts had good heat insulation performance, and for pre-oxidized fibre felts at different needle numbers with increasing temperature, the temperature difference in a steady state increased linearly.
PL
Aby przygotować filce z włóknami preoksydowanymi o doskonałymi właściwościami izolacyjnymi, należy wziąć pod uwagę wiele czynników, a różne procesy produkcyjne wykazały różnice w wydajności izolacji cieplnej filców włóknistych. Aby zbadać wpływ procesu produkcyjnego na parametry izolacji termicznej materiałów, konieczne było przeprowadzenie wielu eksperymentów. W pracy badano głównie wpływ liczby igieł na izolacyjność cieplną wstępnie utlenionych filców włóknistych. Wyniki pokazały, że zwiększenie liczby igieł spowodowało zmniejszenie grubości i gramatury filców włóknistych oraz osłabienie tendencji w zakresie izolacji cieplnej filców z włóknami preoksydowanymi wraz ze wzrastającą liczbą igieł w temperaturze pokojowej i w 100-200 °C. Ponadto, gdy liczba igieł wynosiła 1 i 2, pre-utlenione włókniny igłowane miały dobrą izolację cieplną, a dla wstępnie utlenionych filców włóknistych przy różnych numerach igieł ze wzrastającą temperaturą, różnica temperatur w stanie ustalonym wzrastała liniowo.
Rocznik
Strony
80--86
Opis fizyczny
Bibliogr. 29 poz., rys., tab.
Twórcy
autor
  • Tianjin Polytechnic University, School of Textiles, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin, 300387, China
autor
  • Tianjin Polytechnic University, School of Textiles, Tianjin 300387, China
  • Key Laboratory of Advanced Textile Composites of Ministry of Education, Tianjin, 300387, China
autor
  • Tianjin Polytechnic University, School of Textiles, Tianjin 300387, China
Bibliografia
  • 1. Alam M, Singh H, Suresh S, Redpath D A G. Energy and economic analysis of Vacuum Insulation Panels (VIPs) used in non-domestic buildings. Applied energy 2017; 188, 1-8.
  • 2. Ao W, Liu P J, Yang W J. Agglomerates, smoke oxide particles, and carbon inclusions in condensed combustion products of an aluminized GAP-based propellant. Acta Astronautica 2016; 129, 147-153.
  • 3. Chen L C, Peng P Y, Lin L F, Yang T C K, Huang C M. Facile preparation of nitrogen-doped activated carbon for carbon dioxide adsorption. Aerosol and Air Quality Research, 2014; 14, 916-927.
  • 4. Cheng H M, Xue H F, Hong C Q, Zhang X H. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure. Composites Science and Technology 2017; 140, 63-72.
  • 5. Gao L L, Lu H Y, Lin H B, Sun X Y, Xu J L, Liu D C, Li Y. KOH direct activation for preparing activated carbon fiber from polyacrylonitrile-based pre-oxidized fiber. Chemical Research in Chinese Universities 2014; 30, 441-446.
  • 6. Gao C, Huang L, Yan L B, Kasal B, Li W G. Behavior of glass and carbon FRP tube encased recycled aggregate concrete with recycled clay brick aggregate. Composite Strcutures 2016; 155: 245-254.
  • 7. Liu S P, Han K Q, Chen L, Zheng Y, Yu M H, Li J Q, Yang Z. Influence of external tension on the structure and properties of melt-spun PAN precursor fibers during thermal oxidation. Macromolecular Materials and Engineering 2015; 300: 1001-1009.
  • 8. Liu S P, Han K Q, Chen L, Zheng Y, Yu M H. Influence of air circulation on the structure and properties of melt-spun PAN precursor fibers during thermal oxidation. RSC Advances 2015; 5, 37669-37674.
  • 9. Tomboulian B N, Hyers R W. Predicting the effective emissivity of an array of aligned carbon fibers using the reverse monte carlo ray-tracing method. Journal of Heat Transfer-transactions of the Asme, 2017; 139, 012701.
  • 10. Vo L T T, Navard P. Treatments of plant biomass for cementitious building materials - A review. Construction and Building Materials 2016; 121: 161-176.
  • 11. Williams J, Lawrence M, Walker P. A method for the assessment of the internal structure of bio-aggregate concretes. Construction and Building Materials 2016; 116: 45-51.
  • 12. Zargham S, Bazgir S, Katbab A A, Rashidi A. High-quality carbon nanofiber-based chemically preoxidized electrospun nanofiber. Fullerenes, Nanotubes and Carbon Nanostructures 2015; 23: 1008-1017.
  • 13. Lin J H, Chuang Y C, Huang C H, Li T T, Huang C L, Chen Y S, Lou C W. Needle-bonded electromagnetic shielding thermally insulating nonwoven composite boards: property evaluations. Applied Sciences-Basel 2016; 6, 303.
  • 14. Li C D, Li B B, Pan N, Chen Z F, Saeed M U, Xu T Z, Yang Y. Thermo-physical properties of polyester fiber reinforced fumed silica/hollow glass microsphere composite core and resulted vacuum insulation panel. Energy and buildings 2016; 125, 298-309.
  • 15. Martinelli E, Perri F, Sguazzo C, Faella C. Cyclic shear-compression tests on masonry walls strengthened with alternative configurations of CFRP strips. Bulletin of Earthquake Engineering 2016; 14: 1695-1720.
  • 16. Pehlivanli Z O, Uzun I, Yucel Z P, Demir I. The effect of different fiber reinforcement on the thermal and mechanical properties of autoclaved aerated concrete. Construction and Building Materials, 2016; 112: 325-330.
  • 17. Puszkarz A K, Krucinska I. Study of multilayer clothing thermal insulation using thermography and the finite volume method. FIBRES & TEXTILES in Eastern Europe 2016; 24, 6(120): 129-137. DOI: 10.5604/12303666.1221747.
  • 18. Ren X M, Wang Y S, He T, Xia Z C. Analysis and characterization of orientation structure of preoxidized PAN fibers in high magnetic fields. Journal of Wuhan University of Technology(Materials Science Edition) 2014; 29: 224-228.
  • 19. Stamopoulos A G, Tserpes K I, Prucha P, Vavrik D. Evaluation of porosity effects on the mechanical properties of carbon fiber-reinforced plastic unidirectional laminates by X-ray computed tomography and mechanical testing. Journal of Composite Materials 2016; 50: 2087-2098.
  • 20. Silva H P, Pardini L C, Bittencourt E. Shear properties of carbon fiber/phenolic resin composites heat treated at high temperatures. Journal of Aerospace Technology and Management 2016; 8: 363-372.
  • 21. Shakir A S, Guan Z W, Jones S W. Lateral impact response of the concrete filled steel tube columns with and without CFRP strengthening. Engineering Structures 2016; 116: 148-162.
  • 22. Takahashi F, Abbott A, Murray T M, T'ien J S, Olson S L. Thermal response characteristics of fire blanket materials. Fire and Materials 2014; 38: 609-638.
  • 23. Trautwein G, Plaza-Recobert M, Alcaniz-Monge J. Unusual pre-oxidized polyacrylonitrile fibres behaviour against their activation with CO2: carbonization effect. Adsorption-Journal of The International Adsorption Society 2016; 22: 223-231.
  • 24. Zhai Y J, Peng Z J, Ren X B, Wang C H, Qi L H, Miao H Z. Effect of in-situ transformed pre-oxidized polyacrylonitrile fibers on the microstructure and mechanical properties of TiCN-based cermets. Rare Metal Materials and Engineering 2015; 44: 731-734.
  • 25. Zhu D J, Ma T, Liu W H. Experimental study on electrical heating technology utilizing carbon fiber tape. Journal of Hunan University (Natural Sciences) 2016; 43: 131-136.
  • 26. Cheng H M, Hong C Q, Zhang X H, Xue H F, Meng S H, Han J C. Super flame-retardant lightweight rime-like carbon-phenolic nanofoam. Scientific Reports 2016; 6: 33480.
  • 27. Christke S, Gibson A G, Grigoriou K, Mouritz A P. Multi-layer polymer metal laminates for the fire protection of lightweight structures. Materials & Design 2016; 97: 349-356.
  • 28. Frid S E, Arsatov AV, Oshchepkov M Y. Engineering solutions for polymer composites solar water heaters production. Thermal Engineering 2016; 63: 399-403.
  • 29. Ghelich R, Aghdam R M, Torknik F S, Jahannama M R, Keyanpour-Rad M. Carbothermal reduction synthesis of ZrB2 nanofibers via pre-oxidized electrospun zirconium n-propoxide. Ceramics International 2015; 41: 6905-6911.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4a06e2e-5c34-4e3d-aad4-b1330174f6b1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.