PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Initial assessment of variability in the modes of occurrence of some trace elements in coal seams with vertical profiles in the Upper Silesian Coal Basin in Poland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Knowledge of the way in which minor and trace elements occur in coal is one of the most important geochemical indicators of coal quality. The differences between the methods of binding elements in coal in each coal seam and the variability of this feature of coal in the basin profile have not been discussed so far. These coal features were identified in a group of selected coal seams (209, 401, 405, 407, 501, 504, 510, 615, 620) in the Upper Silesian Coal Basin (USCB). At the same time, the differences in the role of identified mineral and maceral groups in concentrating specific elements in coal is highlighted. Identical or similar tendencies of changes in the way in which As and V, Ba and Rb, Co and Pb, Co and Zn, Mn and Pb, Pb and Zn, Co and Rb, and for Cr and Cu occur in the coal seams in the USCB profile was found. Changes in the mode of occurrence of As and Pb in coal in the USCB profile were probably influenced by carbonate mineralization. The changes in the mode of occurrence of Mni and Pb in the coal were probably determined by dia and epigenetic sulfide mineralization, while the content of Ba, Cr, Rb, Sr, and V in coal from these deposits was affected by clay minerals. It was observed that the greater the degree of the carbonization of the organic matter of coal, the lower the content of As, Mn and Pb in coal and the higher the content of Ba and Sr in coal.
Rocznik
Strony
723--736
Opis fizyczny
Bibliogr. 61 poz., tab., wykr.
Twórcy
  • University of Silesia, 12 Bankowa Str., 40-007 Katowice, Poland
  • Central Mining Institute, 1 Gwarków Sq., 40-166 Katowice, Poland
Bibliografia
  • [1] Bhangare R.C., Ajmal P.Y., Sahu S.K., Pandit G.G., Puranik V.D., 2011. Distribution of trace elements in coal and combustion residues from five thermal power plants in India. Int. J. Coal Geol. 86, 349-356.
  • [2] Bielowicz B., Misiak J., 2017. The forms of occurrence and geochemistry of sulfides in hard coal deposits of the Libiąż Beds in the Upper Silesian Coal Basin, Southern Poland. Geology, Geophysics & Environment 43 (2), 109-125.
  • [3] Chen J., Chen P., Yao D., Huang W., Tang S., Wang W., Liu W., Hu Y., Zhang B., Sha J., 2017. Abundance, distribution, and modes of occurrence of uranium in Chinese Coals. Minerals 7, 239, doi:10.3390/min7120239.
  • [4] Dai S., Hou X., Ren D., Tang Y., 2003. Surface analysis of pyrite in the No. 9 coal seam, Wuda Coalfield, Inner Mongolia, China, using high-resolution time-of-flight secondary ion mass-spactrometry. Int. J. Coal Geol. 55, 139-150.
  • [5] Dai S., Yan X., Ward C.R., Hower J.C., Zhao L., Wang X., Zhao L., Ren D., Finkelman, R.B., 2018. Valuable elements in Chinese coals: a review. J. Int, Geol. Rev. 60, 5-6, 590-620.
  • [6] Dai S., Hower J.C., Finkelman R.B., Graham I.T., French D., Ward C.R., Eskenazy G., Wei Q., Zhao L., 2020. Organic associations of non-mineral elements in coal: A review. Int. J. Coal Geol. 218, 103347.
  • [7] Dai S., Bechtel A., Eble C.F., Flores R.M., French D., Graham L.T., Hood M.M., Hower J.C., Korasidis V.A., Moore T.A., Puttmannl W., Wei Q., Zhao L., O’Keefe J.M.K., 2020. Recognition of peat depositional environments in coal: A review. Int. J. Coal Geol. 219, 103383.
  • [8] Deditius A.P., Utsunomiya S., Reich M., Kesler S.E., Ewing R.C., Hough R., Walshe J., 2011. Trace metal nanoparticles in pyrite. Ore Geol. Rev. 42, 32–46.
  • [9] Duan P., Wang W., Sang S., Tang Y., Ma M., Zhang W., Liang B., 2018. Geochemistry of toxic elements and their removal via the preparation of high-uranium coal in Southwestern China. Minerals 8, 83, https://doi.org/10.3390/min8030083.
  • [10] Eskenazy G., 1972. Adsorption of titanium on peat and coals. Fuel 51, 221-223.
  • [11] Finkelman R.B., 2007. Health Impacts of Coal: Facts and Fallacies. J. Hum. Environ., 36, doi:10.1579/0044-7447(2007)36[103:hiocfa]2.0.co;2.
  • [12] Finkelman R.B., Palmer C.A., Wang P., 2018. Quantification of the modes of occurrence of 42 elements in coal. Int. J. Coal Geol. 185, 138-160.
  • [13] Górecka E., Kozłowski A., Kibitlewski S., 1996. The Silesian-Cracow Zn-Pb deposits, Poland, considerations on ore-forming processes. In: Górecka E., Leach D.L., Kozłowski A. (Eds.), Carbonate – hosted zinc – lead deposits in the Silesian – Cracow area, Poland. Papers of the Polish Geological Institute 154, 167-182.
  • [14] Hower J.C., Dai S., Eskenazy G., 2016. Distribution of Uranium and Other Radionuclides in Coal and Coal Combustion Products, with Discussion of Occurrences of Combustion Products in Kentucky Power Plants. Coal Comb. Gasif. Prod. 8, 44-53, doi: 10.4177/CCGP-D-16-00002.1.
  • [15] Hower J.C., Qian D., Briot N.J., Henke K.R., Hood M.M., Taggart R.K., Hsu-Kim H., 2018.Rare earth element associa-tions in the Kentucky State University stoker ash. Int. J. Coal Geol. 189, 75-82.
  • [16] Huggins F.E., Shah N.. Huffman G., Kolker A., Crowley S., Palmer C.A., Finkelman R.B., 2000. Mode of occurrence of chromium in four US coals. Fuel Proc. Techn. 63, 79-92.
  • [17] ISO 7404‐3., 2009. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite — Part 3: Method of Determining Maceral Group Composition. International Organization for Standardization, Switzerland 2009a, 7 pp.
  • [18] ISO 7404‐5., 2009. Methods for the Petrographic Analysis of Bituminous Coal and Anthracite — Part 5: Method of Determining Microscopically the Reflectance of Vitrinite.
  • [19] International Organization for Standardization, Switzer-land. 2009b, 14 pp.International Classification of Seam Coals, Final Version. Econ. Commis. for Europe, Committee On Energy, Working Party On Coal, Fifth Session, 1995, Genève.
  • [20] Jiang Y., Qian H., Zhou G.,2016. Mineralogy and geochemistry of different morphological pyrite in Late Permian coals, South Chin. Arab. J. Geosci. 9, 590.
  • [21] Jureczka J., Kotas A., 1995. Upper Silesian Coal Basin, Coal deposits. In: Zdanowski A., Żakowa H. (Eds.), The Car-boniferous system in Poland. Papers of the Polish Geol. Institute 148, 164-172.
  • [22] Jureczka J., Dopita M., Gałka M., Krieger W., Kwarciński J., Martinec P., 2005. Geological Atlas of Coal Deposits of the Polish and Czech Parts of the Upper Silesian Coal Basin. Publ. Polish Geol. Institute, Warsaw.
  • [23] Ketris M.P., Yudovich Ya.E., 2009. Estimations of Clarkes for Carbonaceous biolithes: World averages for trace element contents in black shales and coals. Int. J. Coal Geol. 78, 135-148.
  • [24] King J.F., Taggart R.K., Smith R.C., Hower J.C., Hsu-Kim H., 2018. Aqueous acid and alkaline extraction of rare earth elements from coal combustion ash. Int. J. Coal Geol. 195, 75-83.
  • [25] Kokowska-Pawłowska M., 2014. Relationship between the content of hazardous trace elements in coal lithotypes and their ahes (405 coal seam, USCB), Gospodarka Surowcami Mineralnymi – Mineral Resources Management 30, 2, 51-66.
  • [26] Kokowska-Pawłowska M., 2016. Relationship of the trace elements content with minerals and organic matter of the lithotypes from the coal seam 308 (orzesze beds) USCB, Systemy wspomagania w inżynierii produkcji – Geochemia I Geolgia Środowiska Terenów Uprzemysłowionych 5(17), 109-120.
  • [27] Kolker A., 2012. Minor element distribution in iron disulfides in coal: A geochemical review. Int. J. Coal Geol. 94, 32-43.
  • [28] Krzeszowska E., 2019. Geochemistry of the Lublin Formation from the Lublin Coal Basin: Implications for weathering intensity, palaeoclimate and provenance. Int. J. Coal Geol. 2016, 103306.
  • [29] Lewińska-Preis L., Fabiańska M.J., Ćmiel S., Kita A., 2009. Geochemical distribution of trace elements in Kaffiovra and Longyearbyen coals Spitrsbergen Norway. Int. J. Coal Geol. 80, 211-223.
  • [30] Liu C., Zhou C., Zhang N., Pan J., Cao S., Tang M., Ji W., Hu T., 2019. Modes of occurrence and partitioning behaviour of trace elements during coal preparation - A case study in Guizhou Province, China. Fuel 243, 79-87.
  • [31] Makowska D., Bytnar K., Dziok T., Rozwadowska T., 2014. Effect of coal cleaning on the content of some heavy metals in Polish bituminous coal. Przemysł Chemiczny 93, 12, 2048-2050.
  • [32] Makowska D., Strugała A., Wierońska F., Włodek A., 2017. Investigation of the effectiveness of lead disposal from hard coal through the cleaning process, E3S Web of Conferences 2016, 10, 00117.
  • [33] Marczak M., 1985. Genesis and regularities of the trace elements occurrence in the Chełm coal deposit at Coal Basin of Lublin). Scientific Papers of Silesian University in Katowice 748 (Ed. A. Jachowicz and E. Konstatntynowicz), 1-109.
  • [34] Mohanty M.K., Honaker R.Q., Mondal K., Paul B.C., Ho K., 1998. Trace element reductions in fine coal using advanced physical cleaning. Coal. Prep. 19, 195-211.
  • [35] Nieć M., Łabuś J., 1966. Occurrence of barite in the “Sobieski” coal mine near Jaworzno. Przegląd Górniczy 22, 7, 321-323 (in Polish).
  • [36] Pan J., Zhou C-C., Zhang N-N., Liu C., Tang M-C., Cao S-S., 2018. Arsenic in coal: modes of occurrence and reduction via coal preparation - a case study. Int. J. Coal Prep. Util., doi.org/10.1080/ 19392699.2017.1411348.
  • [37] Parzentny H., 1994. Lead distribution in coal and coaly shales in the Upper Silesian Coal Basin. Geol. Quaterly 38, 43-58.
  • [38] Parzentny H.R., 1995. The influence of inorganic mineral substances on content of certain trace elements in the coal of the Upper Silesian Coalfield. Scientific Papers of Silesian University in Katowice1460 (T.Jankowski Ed.), 1-90 (in Polish).
  • [39] Parzentny H.R., Lewińska-Preis, L, 2006. The role of sulphide and carbonate minerals in the concentration of chalcophile elements in the bituminous coal seams of a paralic series (Upper Carboniferous) in the Upper Silesian Coal Basin (USCB), Poland. Chem. Erde-Geochemistry 66, 227-247.
  • [40] Parzentny H.R., Róg L., 2018. Modes of occurrence of ecotoxic elements in coal from the Upper Silesian Coal Basin, Poland. Arabian Journal of Geosciences DOI: 10.1007/s12517-018-4134-x.
  • [41] Parzentny H.R., Róg L.,2019.The role of mineral matter in concentrating uranium and thorium in coal and combustion residues from power plant in Poland. Minerals, 9, 312, doi:10.3390/min9050312.
  • [42] PN-ISO 1171:2002. Solid fuels. Ash determination; International Organization Standarization: Geneva, Switzerland, 2002.
  • [43] PN-G-04501:1998. Węgiel kamienny i antracyt. Pobieranie próbek pokładowych bruzdowych.
  • [44] PN-G-04571:1998. Paliwa stałe. Oznaczanie zawartości węgla, wodoru i azotu. automatycznymi analizatorami. Metoda makro.
  • [45] PN-G-04584:2001. Paliwa stałe. Oznaczanie zawartości siarki całkowitej i popiołowej automatycznymi analizatorami.
  • [46] PN-G-04582:1997. Węgiel kamienny i brunatny - Oznaczanie zawartości siarki siarczanowej (VI) i pirytowej.
  • [47] PN-G-04518:1981. Węgiel kamienny. Oznaczanie zdolności spiekania metodą Rogi.
  • [48] PN-ISO 501:2007. Węgiel kamienny. Oznaczanie wskaźnika wolnego wydymania.
  • [49] Sekine Y., Sakajin K., Kikuchi E., 2008. Release behavior of trace elements from coal during high-temperature process-ing. Powder Technol. 180, 1, 210-215.
  • [50] Strugała A., Makowska D., Bytnar K., Rozwadowska T., 2014. Analysis of the contents of selected critical elements in waste from the bituminous coal cleaning process. Polityka Energetyczna – Energy Policy Journal, 17, 4, 77-89 (in Polish).
  • [51] Swaine D.J., 1990. Trace elements in coal. Butterworths, London 1-278.
  • [52] Swanson V.E., Huffman C., 1976. Guidelines for sample collecting and analytical methods used in U.S. Geological Survey for determining chemical composition of coal. Geological Survey Circular, 735.
  • [53] Vasconcelos L.S., 1999. The petrographic composition of world coals. Statistical results obtained from a literature survey with reference to coal type (maceral composition). Int. J. Coal Geol., 40, 27-58.
  • [54] Wierońska F., Makowska D., Strugała A., 2017. Assessment of the content of arsenic in solid by-products from coal combustion. E3S Web Conf., 14, 02006.
  • [55] Xu R., Yan R., Zheng C., Qiao Y. 2003. Status of trace element emission in a coal combustion process: a review. Fuel Process. Technol. 85, 215–237.
  • [56] Yudovich Ya.E., Ketris M.P., 2005. Toxic trace elements in coals. Russian Acadamie of Sciences,Ekaterinburg,1-655.
  • [57] Zhang J., Han C-L., Xu Y-Q., 2003. The release of the hazardous elements from coal in the initial stage of combustion process. Fuel Proc. Techn. 84, 121-133.
  • [58] Zhao S., Duan Y., Li Y., Liu M., Lu J., Ding Y., Gu X., Tao J., Du M., 2018. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant. Fuel 2014, 597-606.
  • [59] Zhou C-C., Liu C., Zhang N., Cong L-F., Pan J-H., Peng C-B., 2018. Fluorine in coal: The modes of occurrence and its removability by froth flotation. Int. J. Coal Prep. Utilization., 38, 149-161.
  • [60] Zhou L., Guo H., Wang X., Chu M., Zhang G., Zhang L., 2019. Effect of occurrence mode of heavy metal elements in a low rank coal on volatility during pyrolysis. Int. J. Coal Sci. Technol. 6, 235-246.
  • [61] Zubovic P., Stadnichenko T., Sheffey N.B., 1964. Distribution of minor elements in coal beds of the Eastern Interior Region. Geological Survey Bulletin, 1117-B, 1-41.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d49cfaac-f47a-4e2e-a3fb-d5bdc7d5297a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.