PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Zagadnienia modelowania matematycznego tlenkowych ogniw paliwowych

Autorzy
Identyfikatory
Warianty tytułu
EN
Aspects of mathematical modeling of solid oxide fuel cells
Języki publikacji
PL
Abstrakty
PL
Zagadnienia związane z modelowaniem tlenkowych ogniw paliwowych nie doczekały się jeszcze w języku polskim dostępnych opracowań książkowych. Wiedza o nich jest rozproszona, a zwarte wydawnictwa angielskojęzyczne bardzo szczegółowe. W celu usystematyzowania wiedzy, zdecydowano się w tej pracy na przedstawienie wybranych aspektów w podręcznikowy sposób (dwa pierwsze rozdziały). W rozdziale pierwszym, przedstawiono ogólne informacje o budowie, rodzajach i zastosowaniach ogniw paliowych. Szerzej przybliżono historię rozwoju ogniw oraz nakreślono perspektywę ich zastosowań w ramach modnego obecnie kierunku rozwoju energetyki zwanego energetyką rozproszoną lub pro-konsumencką, a kończąc na omówieniem wybranych problemów konstrukcyjnych tlenkowych ogniw paliwowych (SOFC), które dalej pozostają podstawowym obiektem rozważań. W drugim rozdziale zatytułowanym „Podstawy termodynamiczne” omówiono podstawowe dla ogniw paliwowych pojęcia i wielkości. Omówiono równanie stanu czynnika roboczego. Zdefiniowano dla ogniwa paliwowego pojęcie pracy maksymalnej oraz maksymalnego napięcia oraz maksymalnej mocy. Encyklopedycznie omówiono kinetykę reakcji chemicznych oraz zjawiska dyfuzji w zakresie istotnym dla zjawisk zachodzących w tlenkowych ogniwach paliwowych. Trzeci rozdział pracy poświęcony jest omówieniu klasycznego modelu matematycznego ogniwa, którego najistotniejszą cechą jest konieczność wykorzystania zależności empirycznych opartych o dane doświadczalne. Ogranicza to w znaczny sposób możliwości wykorzystania klasycznego podejścia do modelowania poza zakresem dostępnych danych doświadczalnych, co zostało zobrazowane poprzez porównanie wyników obliczeń modelowych z wynikami pomiarów. Nowy model sposób modelowania tlenkowych ogniw paliwowych przedstawiono w rozdziale czwartym. Utworzono go przy założeniu, aby zminimalizować liczbę potrzebnych charakterystyk doświadczalnych, a wykorzystać przede wszystkim równania opisujące zachodzące w ogniwie zjawiska termodynamiczne, chemiczne i elektryczne. Rozdział piąty pracy poświęcony jest dyskusji nowego podejścia do modelowania, w którym przedstawiono wyniki walidacji modelu oraz przykłady zastosowań do optymalizacji zarówno parametrów konstrukcyjnych jak i eksploatacyjnych. Podjęto próbę także analizy parametrycznej ogniwa oraz rozwinięcia modelu od modelu zero do jednowymiarowego. Zupełnie inny model ogniwa zawiera rozdział szósty, opary o aproksymację danych pomiarowych przy pomocy sztucznych sieci neuronowych, gdzie ogniwo traktowane jest jako czarna skrzynka o rejestrowanych wejściach i wyjściach. Zaprezentowano także model nazwany hybrydowym, w którym do zmniejszenia liczby wejść wykorzystano znane zależności analityczne. Przestawiono wyniki analizy skuteczność algorytmów uczenia sieci. W rozdziale siódmym w oparciu o różniczkowe równanie bilansu masy oraz energii przedstawiono zagadnienia modelowania procesów nieustalonych, jakie mogą zachodzić w ogniwie, w tym takie jak zmiana obciążenia, rozruch, odstawienie wybrane stany awaryjne. W rozdziale ósmym przedstawiono wyniki uzyskane dla modelowania układów hybrydowych. Z pracą ogniwa paliwowego w układzie energetycznym związana była także praca doktorska autora, dlatego też w rozdziale tym omówione zagadnienia zostały zmarginalizowane do niezbędnego minimum i główną uwagę skupiono na zagadnieniach nieporuszanych w wcześniej, tj. dotyczących poszukiwania optymalnego sterowania pracą układu hybrydowego z ogniwem paliwowym. Literatura tematu w przeważającej większości jest anglojęzyczna, często zatem napotyka się na trudności w tłumaczeniu niektórych bardzo często występujących zwrotów na język polski, np. „current collector”, „steam reforming”, „carbon deposition”, „manifold”, „housing” i in. Z tego też powodu zdecydowano się na nietłumaczenie źródłowych rysunków i wykresów anglojęzycznych, a w celu ujednolicenia pracy, własne rysunki i wykresy także przedstawiono w wersji anglojęzycznej. Autor z góry przeprasza za wszelkiego rodzaju niejednoznaczności pojawiające się w teksie pracy wynikające z pojęć trudno tłumaczalnych na język polski.
EN
The modeling of Solid Oxide Fuel Cells has yet to receive due coverage in Polish language books. Knowledge is dispersed and compact English-language publishing very detailed. In order to systematize the scientific knowledge available, it was decided in this study to present certain aspects in a handbook format (the first two chapters). Chapter three features a discussion of the classical mathematical model of the SOFC, which uses empirical relationships based on experimental data. This severely reduces the possibility of applying the approach to modeling fuel cell parameters that lie outside the available experimental data, as is illustrated by comparing the results of model calculations of the measurement results. A new model of a solid oxide fuel cell is presented in chapter four. The model was created with the minimum number of necessary factors and based mainly on equations describing the phenomena occurring in the fuel cell: thermodynamic, chemical and electrical properties. The validation of the model and examples of applications (both design point and off-design operation) are shown in chapter five. Chapter six shows the use of artificial neural networks in SOFC behavior modeling, whereas chapter seven shows transient modeling issues that may occur in SOFC, including load change, start-up, shutdown and selected emergency scenarios. Operation of the SOFC in the hybrid system is presented in chapter eight, but as the author’s doctoral dissertation was on closely-related issues, this chapter discusses them in passing with the main attention being on issues not covered previously, such as the search for an optimum hybrid system to control fuel cell operation.
Rocznik
Tom
Strony
3--195
Opis fizyczny
Bibliogr. 194 poz., rys., tab.
Twórcy
autor
  • Instytut Techniki Cieplnej PW
Bibliografia
  • 1. Fuel cell handbook – 6th edition, Tech. rep., EG and G Technical Services, Inc., 2002.
  • 2. Market challenges of fuel cell commercialisation, International Journal of Hydrogen Energy, 28, 683, 2003.
  • 3. Ackermann, T., and V. Knyazkin, Interaction between distributed generation and the distribution network: operation aspects, in Transmission and Distribution Conference and Exhibition 2002, Asia Pacific. IEEE/PES, 2002.
  • 4. Adeli, H., and S. Hung, Machine Learning: Neural Networks, Genetic Algorithms and Fuzzy Systems, Wiley, 1995.
  • 5. Aguiar, P., C. Adjiman, and N. Brandon, Anode-supported intermediate temperature direct internal reforming solid oxide fuel cell. i: model-based steady-state performance, Journal of Power Sources, 138 (1-2), 120-136, 2004.
  • 6. Armstrong, T. J., and A. V. Virkar, Performance of solid oxide fuel cells with lsgm-lsm composite cathodes, Journal of The Electrochemical Society, 149(12), A1565-A1571, 2002.
  • 7. Arriagada, J., P. Olausson, and A. Selimovic, Artificial neural network simulator for SOFC performance prediction, Journal of Power Sources, 112(1), 54-60, 2002.
  • 8. Assabumrungrat, S., N. Laosiripojana, V. Pavarajarn, W. Sangtongkitcharoen, A Tangjitmatee, and P. Praserthdam, Thermodynamic analysis of carbon formation in a solid oxide fuel cell with a direct internal reformer fuelled by methanol, Journal of Power Sources, 139(1-2), 55-60, 2005.
  • 9. Badwal, S., R. Deller, K. Foger, Y. Ramprakash, and J. Zhang, Interactionl between chromia forming alloy interconnects and air electrode of solid oxide fuel cells, Solid State Ionics, 99(3-4), 297-310, 1997.
  • 10. Badyda, K., Zagadnienia modelowania matematycznego instalacji energetycznych, Prace Naukowe Politechniki Warszawskie, seria Mechanika, 189, 2001.
  • 11. Badyda, K., Characterises of advanced gas turbine cycles [charakterystyki złożonych układów z turbinami gazowymi], Rynek Energii, 88(3), 80-86, 2010.
  • 12. Bard, A. J., and L. R. Faulkner, Electrochemical Methods. Fundamentals and Applications, 2nd ed. ed., Wiley, New York, 2001.
  • 13. Barlow, R., Residential fuel cells: Hope or hype?, www.fuelcells.org, 1999.
  • 14. Bauen, A., D. Hart, and A. Chase, Fuel cells for distributed generation in developing countries - an analysis, International Journal of Hydrogen Energy, 28, 695-701, 2003.
  • 15. Bedont, P., O. Grillo, and A. F. Massardo, Off-design performance analysis of a hybrid system based on an existing molten fuel cell stack, Journal of Engineering for Gas Turbines and Power, 125, 2003.
  • 16. Bieberle, A., and L. J. Gauckler, State-space modeling of the anodic sofc system ni, h2-h2o-ysz, Solid State Ionics, 146 (1-2), 23-41, 2002.
  • 17. Blum, L., R. Deja, R. Peters, and D. Stolten, Comparison of efficiencies of low, mean and high temperature fuel cell systems, International Journal of Hydrogen Energy, 36 (17), 11,056-11,067, 2011.
  • 18. Bockris, J. O., A.K.N.Reddy, and M. Gamboa-Aldeco, Modern Electrochemistry 2A. Fundamentals of Electrodics, second edition ed., Kluwer Academic / Plenum Publishers, 2000.
  • 19. Bohn, D., and N. Poppe, Assessment of the potential of combined micro gas turbine and high temperature fuel cell systems, in Proceedings of ASME TURBO EXPO 2002, 2002.
  • 20. Bove, R., and S. Ubertini, Modeling solid oxide fuel cell operation: Approaches, techniques and results, Journal of Power Sources, 159, 543-559, 2006.
  • 21. Bove, R., P. Lunghi, and N. M. Sammes, Sofc mathematic model for systems simulations. part one: from a micro-detailed to macro-black-box model, International Journal of Hydrogen Energy, 30 (2), 181-187, 2005.
  • 22. Brett, D. J., A. Atkinson, D. Cumming, E. Ramirez-Cabrera, R. Rudkin, and N. P. Brandon, Methanol as a direct fuel in intermediate temperature (500-600°c) solid oxide fuel cells with copper based anodes, Chemical Engineering Science, 60 (21), 5649-5662, 2005.
  • 23. Brunner, D. A., S. Marcks, M. Bajpai, A. K. Prasad, and S. G. Advani, Design and characterization of an electronically controlled variable flow rate ejector for fuel cell applications, International Journal of Hydrogen Energy, 37 (5), 4457-4466, 2012.
  • 24. Budzianowski, W., Role of catalytic technologies in combustion of gaseous fuels, Rynek Energii, 82 (3), 59-63, 2009.
  • 25. Budzianowski, W., Opportunities for bioenergy in poland: Biogas and solid biomass fuelled power plants, Rynek Energii, 94 (3), 138-146, 2011.
  • 26. Burshtein, A. I., Introduction to Thermodynamics and Kinetic Theory of Matter, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2006.
  • 27. Cai, Z., T. Lan, S. Wang, and M. Dokiya, Supported Zr(Sc)O2 SOFCs for reduced temperature prepared by slurry coating and co-firing, Solid State Ionics, 152-153 (1), 583-590, 2002.
  • 28. Campanari, S., and E. Macchi, Comparative analysis of hybrid cycles based on molten carbonate and solid oxide fuel cells, in Proceedings of ASME Turbo Expo 2001, 2001.
  • 29. Cao, H., Z. Deng, X. Li, J. Yang, and Y. Qin, Dynamic modeling of electrical characteristics of solid oxide fuel cells using fractional derivatives, International Journal of Hydrogen Energy, 35 (4), 1749-1758, 2010.
  • 30. Cao, H., X. Li, Z. Deng, J. Jiang, J. Yang, J. Li, and Y. Qin, Dynamic modeling and experimental validation for the electrical coupling in a 5-cell solid oxide fuel cell stack in the perspective of thermal coupling, International Journal of Hydrogen Energy, 36(7), 4409-4418, 2011.
  • 31. Chaichana, K., Y. Patcharavorachot, B. Chutichai, D. Saebea, S. Assabumrungrat, and A. Arpornwichanop, Neural network hybrid model of a direct internal reforming solid oxide fuel cell, International Journal of Hydrogen Energy, 37(3), 2498-2508, 2012.
  • 32. Chan, S. H., X. J. Chen, and K. A. Khor, An electrolyte model for ceramic oxygen generator and solid oxide fuel cell, Journal of Power Sources, 111(2), 320-328, 2002.
  • 33. Chan, S. H., H. K. Ho, and Y. Tian, Modelling of simple hybrid solid oxide fuel cell and gas turbine power plant, Journal of Power Sources, 109(1), 111-120, 2002.
  • 34. Chan, S. H., H. K. Ho, and Y. Tian, Multi-level modeling of sofc-gas turbine hybrid system, International Journal of Hydrogen Energy, 28(8), 889-900, 2003.
  • 35. Chapman, S., and T. G. Cowling, The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction, and diffusion in gases, Cambridge University Press, 1990.
  • 36. Chouinard, J. G., Residential pem fuel cell systems, in 14th World Hydrogen Conference, 2002.
  • 37. Christman, K., and M. Jensen, Solid oxide fuel cell performance with cross-flow roughness, Journal of Fuel Cell Science and Technology, 8(2), 024,501, 2011.
  • 38. Cimenti, M., and J. Hill, Thermodynamic analysis of solid oxide fuel cells operated with methanol and ethanol under direct utilization, steam reforming, dry reforming or partial oxidation conditions, Journal of Power Sources, 186(2), 377-384, doi:10.1016/j.jpowsour.2008.10.043, 2009.
  • 39. Colombo, K., V. Kharton, and O. Bolland, Simulation of an oxygen membrane-based gas turbine power plant: Dynamic regimes with operational and material constraints, Energy and Fuels, 24(1), 590-608, 2010.
  • 40. Colpan, C. O., I. Dincer, and F. Hamdullahpur, A review on macro-level modeling of planar solid oxide fuel cells, International Journal Of Energy Research, 32, 336-355, 2008.
  • 41. Connors, K., Chemical Kinetics, VCH Publishers, 1990.
  • 42. Cook, B., An Introduction to Fuel Cells And Hydrogen Technology, Heliocentris, Vancouver, 2001.
  • 43. Corporation, S.-W. P., A high efficiency PSOFC/ATS-gas turbine power system - final report, Tech. rep., Siemens-Westinghouse Power Corporation, 2001.
  • 44. Costamagna, P., L. Magistri, and A. F. Massardo, Design and part-load performance of a hybrid system based on a solid oxide fuel cell reactor and a micro gas turbine, Journal of Power Sources, 96 (2), 352-368, 2001.
  • 45. Danilov, V. A., and M. O. Tade, A cfd-based model of a planar sofc for anode flow field design, International Journal of Hydrogen Energy, 34 (21), 8998-9006, 2009.
  • 46. Ding, J., and J. Liu, An anode-supported solid oxide fuel cell with spray-coated yttria-stabilized zirconia (ysz) electrolyte film, Solid State Ionics, 179, 1246-1249, 2008.
  • 47. Dokmaingam, P., S. Assabumrungrat, A. Soottitantawat, and N. Laosiripojana, Modelling of tubular-designed solid oxide fuel cell with indirect internal reforming operation fed by different primary fuels, Journal of Power Sources, 195, 69-78, 2010.
  • 48. Dunbar, W. R., and R. A. Gaggioli, Computer simulation of solid electrolyte fuel cells, in Proceedings of the 23rd Intersociety Energy Conversion Engineering Conference, 1988.
  • 49. Dunbar, W. R., N. Lior, and R. Gaggioli, Exergetic advantages of topping rankine power cycles with fuel cell units, American Society of Mechanical Engineers, Advanced Energy Systems Division, 21, 63-68, 1990.
  • 50. Edlund, D., Fuel cell systems, Tech. rep., IdaTech, LLC, Oregon, 2002.
  • 51. Ehl, R. G., and A. Ihde, Faraday’s electrochemical laws and the determination of equivalent weights, Journal of Chemical Education, 31, 226-232, 1954.
  • 52. Entchev, E., and L. Yang, Application of adaptive neuro-fuzzy inference system techniques and artificial neural networks to predict solid oxide fuel cell performance in residential microgeneration installation, Journal of Power Sources, 170 (1), 122-129, 2007.
  • 53. Erdmann, G., Future economics of the fuel cell housing market, International Journal of Hydrogen Energy, 28, 685-694, 2003.
  • 54. Feng, X., and J. Liu, Impedance specifications for stable dc distributed power systems, Power Elelctronics IEEE Transactions, 17, 157-162, 2002.
  • 55. Findeisen, W., Poradnik inżyniera automatyka, Wydawnictwa Naukowo-Techniczne, 1973.
  • 56. Flemming, A., and J. Adamy, Modeling solid oxide fuel cells using continuous time recurrent fuzzy systems, Eng. Appl. Artif. Intell., 21 (8), 1289-1300, 2008.
  • 57. Fontes, E., C. Lagergren, and D. Simonsson, Mathematical modelling of the mcfc cathode, Electrochimica Acta, 38 (18), 2669- 2682, 1993.
  • 58. Fontes, E., C. Lagergren, and D. Simonsson, Mathematical modelling of the mcfc cathode on the linear polarisation of the nio cathode, Journal of Electroanalytical Chemistry, 432 (1-2), 121-128, 1997.
  • 59. Freeh, J. E., C. J. Steffen, and L. M. Larosiliere, Off-design performance analysis of a solid-oxide fuel cell / gas turbine hybrid for auxiliary aerospace power, in Third International Conference on Fuel Cell Science Engineering and Technology, 2005.
  • 60. Furusaki, A., H. Konno, and R. Furuichi, Pyrolitic process of la(iii)-cr(vi) precursor for the perovskitc type lanthanum chromium oxide, Thermochimica Acta, 253, 253-264, 1995.
  • 61. Gemmen, R., and C. Johnson, Dynamics of solid oxide fuel cell operation, in Second International Conference on Fuel Cell Science, Engineering and Technology, 2004.
  • 62. Ghezel-Ayagh, H., and M. Lukas, Dynamic modeling and simulation of a hybrid fuel cell/gas turbine power plant for control system development, in Second International Conference on Fuel Cell Science, Engineering and Technology, 2004.
  • 63. Green, T., and C. Hernandez Aremburo, The role of power electronics in future power systems.
  • 64. Groot, S. D., and P. Mazur, Non-equilibrium Thermodynamics, North-Holland, Amsterdam, 1962.
  • 65. Grove, W. R, On voltaic series and the combination of gasses by platinum, Philosophical Magazine, 14,127-130, 1839.
  • 66. Hajimolana, S., M. Hussein, W. Daud, M. Somush, and A. Shamiri, Mathematical modeling of solid oxide fuel cells: A review, Renewable and Sustainable Energy Reviews, 15(4), 1893-1917, 2011.
  • 67. Hajimolana, S. A., and M. Soroush, Dynamic behavior and control of a tubular solid-oxide fuel cell system, in ACC'09: Proceedings of the 2009 conference on American Control Conference, pp. 2660-2665, IEEE Press, Piscataway, NJ, USA, 2009.
  • 68. Harvey, S. P., and H. J. Richter, Improved gas turbine power plant efficiency by use of recycled exhaust gases and fuel cell technology, Society of Mechanical Engineers, Advanced Energy Systems Division, 30, 199-207, 1993.
  • 69. Harvey, S. P., and H. J. Richter, Gas turbine cycles with solid oxide fuel cells. part ii: A detailed study of a gas turbine cycle with an integrated internal reforming solid oxide fuel cell, Journal of Energy Resources Technology, 116, 312-318, 1994.
  • 70. Hayashi, H., M. Watanabe, and H. Inaba, Measurement of thermal expansion coefficient of lacro3, Thermochimica Acta, 359(1), 77-85, 2000.
  • 71. Hecht, E. S., G. K. Gupta, H. Zhu, A. M. Dean, R. J. Kee, L. Maier, and O. Deutschmanm, Methane reforming kinetics within a ni-ysz sofc anode, support, Applied Catalysis A: General, 295(1), 40-51, 2005.
  • 72. Herle, J. V. , F. Marchal, S. Leuenberger, Y. Membrez, O. Bucheli, and D. Favrat, Process flow model of solid oxide fuel cell system supplied with sewage biogas, Journal of Power Sources, 131(1-2), 127-141, 2004.
  • 73. Ho, T. X., P. Kosinski, A. C. Hoffmann, and A. Vik, Modeling oftran-sport, chemicalandelectrochemicalphenomenaina cathode-supported sofc, Chemical Engineering Science 64, 3000-3009, 2009.
  • 74. Hoogers G., Fuel Cell Technology Handbook, CRC Press LLC, 2003.
  • 75. Hua H.-B., Z.-D. Zhong, X.-J. Zhu and H.-Y. Tu, Nonlinear dynamic modeling for a sofc stack by rusing a hammerstein model, Journal of Power Sources, 175, 441-446, 2008.
  • 76. Huo, H., X. Zhu, and G. Cao, Nonlinear modeling of a SOFC stack based on a least squares support vector machine, Journal of Power Sources 162 (2), 1220-1225, 2006.
  • 77. Hussain M., X. Li, and I. Dincer, Mathematical modelin of planar solid oxide fuel cells, Journal of Power Sources 161 (2), 1012-1022, 2006.
  • 78. Hussain, M., X. Li, and I. Dincer, Mathematical modeling of transport phenomena in porous sofc anodes, International Journal of Thermal Sciences, 46, 48-56, 2007.
  • 79. Ishihara, T., Perovskite Oxide for Solid Oxide Fuel Cells, Springer Science+Business Media, LLC, 2009.
  • 80. Ishihara, T., T. Shibayama, M. Honda, H. Nishiguchi, and Y. Takita, Solid oxide fuel cell using co doped la(sr)ga(mg)o3 perovskite oxide with notably high power density at intermediate temperature, Chemical communications, 13, 1227-1228, 1999.
  • 81. Janardhanan, V. M., V. Heuveline, and O. Deutschmarm, Three-phase boundary length in solid-oxide fuel cells: A mathematical model, Journal of Power Sources, 178 (1), 368-372, 2008.
  • 82. Jiang, Y., and A. V. Virkar, Fuel composition and diluent effect on gas transport and performance of anode-supported sofcs, Journal of The Electrochemical Society, 150 (7), A942-A951, 2003.
  • 83. Josefik, M., M. Binder, and F. Holcomb, DoD stationary fuel cell demonstration program, www.fuelcellseminar.com/2002_presentations.asp, 2002.
  • 84. J.Padulles, G. Axilt and J. McDonald, An integrated SOFC plant dynamic model for power systems simulation, Journal of Power Sources, 86, 495-500, 2000.
  • 85. Jurado, F., Power supply quality improvement with a. SOFC plant by neural-network-based control, Journal of Power Sources, 117 (1-2), 75-83, 2003.
  • 86. Kakac, S., A. Pramuanjaroenkij, and X. Zhou, A review of numerical modeling of solid oxide fuel cells, International Journal of Hydrogen Energy, 32 (7), 761-786, 2007.
  • 87. Kandepu, R., L. Imsland, B. A. Foss, C. Stiller, B. Thorud, and O. Bolland, Modeling and control of a sofc-gt-based autonomous power system, Energy, 32 (4), 406-417, 2007.
  • 88. Kang, Y.-W., J. Li, G.-Y. Cao, H.-Y. Tu, J. Li, and J. Yang, A reduced 1d dynamic model of a planar direct internal reforming solid oxide fuel cell for system research, Journal of Power Sources, 188(1), 170-176, 2009.
  • 89. Kimijima, S., and N. Kasagi, Performance evaluation of gas turbine-fuel cell hybrid micro generation system, in Proceedings of ASME TURBO EXPO, GT-2002-30111, 2002.
  • 90. Kishor, N., and S. Mohanty, Fuzzy modeling of fuel cell based on mutual information between variables, International Journal of Hydrogen Energy, 35 (8), 3620-3631, 2010.
  • 91. Koch, S., Contact resistance of ceramic interfaces between materials used for solid oxide fuel cell applications, Phd thesis, Technical University of Denmark, 2002.
  • 92. Kopaskakis, G., T. Brinson, S. Credle, and M. Xu, A theoretical solid oxide fuel cell model for system controls and stability design, Tech. rep., NASA, 2006.
  • 93. Korbicz, J., A. Obuchowicz, and U. D., Sztuczne sieci neuronowe. Podstawy i zastosowania, Akademicka Oficyna Wydawnicza PLJ, Warszawa, 1994.
  • 94. Kordesch, K., and G. Simader, Fuel Cell and Their Applications, VCH Verlags-gellschaft GmbH, 1996.
  • 95. Kuester, J., and J. Mize, Optimization Techniques with FORTRAN, Mc, 1973.
  • 96. Kupecki, J., and K. Badyda, SOFC-based micro-CHP system as an example of efficient power generation unit, Archives of Thermodynamics, 32(3), 33-43, 2011.
  • 97. Kurokawa, H., G. Lau, C. Jacobson, L. De Jonghe, and S. Visco, Water-based binder system for sofc porous steel substrates, Journal of Materials Processing Technology, 182(1-3), 469-476, 2007.
  • 98. Kurzke, J., Compressor and turbine maps for gas turbine performance computer programs, 2004.
  • 99. Lanzini, A., P. Leone, and P. Asinari, Microstructural characterization of solid oxide fuel cell electrodes by image analysis technique, Journal of Power Sources, 194, 408-422, 2009.
  • 100. Larrain, D., J. V. herle, F. Maréchal, and D. Favrat, Generalized model of planar sofc repeat element for design optimization, Journal of Power Sources, 131(1-2), 304-312, 2004.
  • 101. Leah, R., N. Brandon, and P. Aguiar, Modelling of cells, stacks and systems based around metal-supported planar it-sofc cells with cgo electrolytes operating at 500-600°c, Journal of Power Sources, 145 (2), 336-352, 2005.
  • 102. Lee, S.-Y., D.-H. Kim, H.-C. Lim, and G.-Y. Chung, Mathematical modeling of a molten carbonate fuel cell (mcfc) stack, International Journal of Hydrogen Energy, 35(23), 13,096-13,103, 2010.
  • 103. Lee, W. Y., D. Wee, and A. F. Ghoniem, An improved one-dimensional membrane-electrode assembly model to predict the performance of solid oxide fuel cell including the limiting current density, Journal of Power Sources, 186 (2) 417-427, 2009.
  • 104. Leone, P., A. Lanzini, M. Santarelli, M. Cale, F. Sagnelli, A. Boulanger, A. Scaletta, and P. Zitella, Methane-free biogas for direct feeding of solid oxide fuel cells, Journal of Power Sources, 195 (1), 239-248, 2010.
  • 105. Levin, J., M. Miller, and L. Eudy, Fuel cells for the transportation industry, in 14th World Hydrogen Energy Conference, 2002.
  • 106. Lewandowski, J., and J. Milewski, Badania wysokotemperaturowych ogniw paliwowych zasilanych biopaliwami, Projekt badawczy N N513 3057 35, Instytut Techniki Cieplnej, Politechnika Warszawska, 2009.
  • 107. Li, P., A. Kotwal, J. Sepulveda, R. Loutfy, and S. Chang, An easy-to-approach and comprehensive model for planar type sofcs, International Journal of Hydrogen Energy, 34, 6393-6406, 2009.
  • 108. Li, Y. H., S. S. Choi, and S. Rajakaruna, An analysis of the control and operation of a solid oxide fuel cell power plant in an isolated system, IEEE Transactions on Energy Conservation, 20, 381-387, 2005.
  • 109. Liese, E. A., R. S. Gemmen, T. P. Smith, and C. L. Haynes, A dynamic bulk sofc model used in a hybrid turbine controls test facility, in Proceedings of GT2006 ASME Turbo Expo 2006: Power for Land, Sea and Air May 8-11, 2006, Barcelona, Spain, pp. GT2006-90, 383, 2006.
  • 110. Liptak, B. G., Instrument Engineers’ Handbook: Process control and optimization, 4 ed. ed., CRC Press, 2003.
  • 111. Liu, Y., and K. Leong, Numerical study of an internal-reforming solid oxide fuel cell and adsorption chiller co-generation system, Journal of Power Sources, 159 (1), 501-508, 2006.
  • 112. Lokuru, A., T. Grube, B. Höhlein, and D. Stolten, Fuel cells for mobile and stationary applications - cost analysis for combined heat and power stations on the basis of fuel cells, International Journal of Hydrogen Energy, 28, 703-711, 2003.
  • 113. Lundberg, W., A high-efficiency SOFC hybrid power system using the mercury 50 ats gas turbine, in Proceedings of ASME TURBO EXPO 2001, 2001.
  • 114. Madsen, B., and S. Barnett, Effect of fuel composition on the performance of ceramic-based solid oxide fuel cell anodes, Solid State Ionics, 176, 2545-2553, 2005.
  • 115. Magistri, L., and M. Bozzolo, Design and off-design analysis of a MW hybrid system based on Rolls-Royce integrated planar SOFC, in Proceedings of ASME TURBO EXPO 2003, 2003.
  • 116. Magistri, L., A. Massardo, C. Rodgers, and C.F.McDonald, A hybrid system based on a personal turbine (5 kw) and a SOFC stack: A flexible and high efficiency energy concept for the distributed power market, ASME Turbo EXPO, 2001.
  • 117. Marban, G., and T. Valdes-Solis, Towards the hydrogen economy?, International Journal of Hydrogen Energy, 32, 1625-1637, 2007.
  • 118. Maren, A., C. Harston, and R. Pap, Handbook of Neural Computing Applications, Academic Press, 1990.
  • 119. Milewski, J., Badanie układów energetycznych z ogniwem paliwowym sofc, Rozprawa doktorska, Politechnika Warszawska, 2004.
  • 120. Milewski, J., Advanced mathematical model of sofc for system optimization, in ASME Turbo Expo 2010: Power for Land, Sea and Air, GT2010-22031, ASME, 2010.
  • 121. Milewski, J., Mathematical model of SOFC for complex fuel compositions, in International Colloquium on Environmentally Preferred Advanced Power Generation, ICEPAG2010-3422, 2010.
  • 122. Milewski, .J., A mathematical model of SOFC: a proposal, Fuel Cells, in proof, accepted June 22, 2012.
  • 123. Milewski, J., and A. Miller, Mathematical model of SOFC (Solid Oxide Fuel Cell) for power plant simulations, in ASME Turbo Expo, vol. 7, pp. 495-501, 2004.
  • 124. Milewski, J., and K. Świrski, Modelling the SOFC behaviours by artificial neural network, International Journal of Hydrogen Energy, 34(13), 5546-5553, 2009.
  • 125. Milewski, J., A. Miller, and E. Mozer, The application of μ-fan instead of the ejector in tubular SOFC module, in Proceedings of the ASME Turbo Expo, vol. 4, pp. 15-21, 2006.
  • 126. Milewski, J., A. Miller, and J. Sałaciński, Mathematical model of tri-generation system based on high temperature fuel cell, in XLVI Sympozjon Modelowanie w Mechanice, 2007.
  • 127. Milewski, J., K. Badyda, and A. Miller, Modelling the influence of fuel composition on solid oxide fuel cell by using the advanced mathematical model, Rynek Energii, 88(3), 159-163, 2010.
  • 128. Milewski, J., K. Świrski, M. Santarelli, and P. Leone, Advanced Methods of Solid Oxide Fuel Cell Modeling, 1 ed., 226 pp., Springer-Verlag London Ltd., 2011.
  • 129. Milewski, J., M. Wołowicz, Łukasz Szabłowski, and K. Badyda, Polymer electrolyte membrane fuel cell-a new approach to mathematical modeling [polimerowe ogniwo paliwowe - nowe podejście do modelowania], Rynek Energii, 98, 136-144, 2012.
  • 130. Miller, A., and J. Lewandowski, Off-design operation of Steam Turbines [Praca turbin parowych w zmienionych warunkach], Warsaw University of Technology Publishers, 1992.
  • 131. Miller, A., J. Milewski, and T. Tomborowski, Urządzenie wentylatorowe do recyrkulacji gazów w wysokotemperaturowym ogniwie paliwowym, 2007.
  • 132. Miller, A., J. Milewski, and T. Swiercz, Parametric study of sofc - gt hybrid system performances, Zeszyty Naukowe, Cieplne Maszyny Przepływowe - Turbomachinery, 133, 245-254, 2008.
  • 133. Miller, A., J. Milewski, and T. Tomborowski, Fuel cell [ogniwo paliwowe], 2012.
  • 134. Mohamed, A., M. Nizam, and A. Salam, Performance evaluation of fuel cell and microturbine as distributed generators in a microgrid, European Journal of Scientific Research, 30, 554-570, 2009.
  • 135. Molenda, J., K. Swierczek, and W. Zajac, Functional materials for the it-sofc, Journal of Power Sources, 173(2), 657-670, 2007.
  • 136. Moran, M. J., Engineering Thermodynamics, CRC Press LLC, 1999.
  • 137. Mueller, F., R. Gaynor, A. Auld, J. Brouwer, F. Jabbari, and G.G.S. Samuelsen, Synergistic integration of a gas turbine and solid oxide fuel cell for improved transient capability, Journal of Power Sources, 176(1), 229-239, 2008.
  • 138. O’Hayre, R., S.-W. Cha, W. Colella, and F. B. Prinz, Fuel Cell Fundamentals, John Wiley & Sons, Inc., Hoboken, New Jersey, 2006.
  • 139. Okano, K., Fuel cells: Far east perspective, in 14th World Hydrogen Conference, 2002.
  • 140. Orna, M. V., and J. Stock, Electrochemistry, past and present, American Chemical Society, Columbus, OH, USA, 1989.
  • 141. Osowski, S., Sieci neuronowe, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1994.
  • 142. Osowski, S., Sieci neuronowe w ujęciu algorytmicznym, WNT, Warszawa, 1996.
  • 143. Palsson, J., and A. Selimovic, Design and off-design predictions of a combined SOFC and gas turbine system, in Proceedings of ASME TURBO EXPO 2001, 2001.
  • 144. Palsson, J., A. Selimovic, and L. Sjunnesson, Combined solid oxide fuel cell and gas turbine systems for efficient power and heat generation, Journal of Power Sources, 86, 442-448, 2000.
  • 145. Park, H., and A. Virkar, Bimetallic (ni-fe) anode-supported solid oxide fuel cells with gadolinia-doped ceria electrolyte, Journal of Power Sources, 186, 133-137, 2009.
  • 146. Park, H.-K., Y.-R. Lee, M.-H. Kim, G.-Y. Chung, S.-W. Nam, S.-A. Hong, T.-H. Lim, and H.-C. Lim, Studies of the effects of the reformer in an internal-reforming molten carbonate fuel cell by mathematical modeling, Journal of Power Sources, 104(1), 140-147, 2002.
  • 147. Peng, D. Y., and D. B. Robinson, A new two-constant equation of state, Industrial and Engineering Chemistry: Fundamentals, 15, 59-64, 1976.
  • 148. Pfafferodt, M., P. Heidebrecht, M. Stelter, and K. Sunclmacher, Model-based prediction of suitable operating range of a sofc for an auxiliary power unit, Journal of Power Sources, 149, 53-62, 2005.
  • 149. Projekt badawczy, Badanie układów energetycznych z ogniwem paliwowym, Tech. Rep. 4T10B04424, Instytut Techniki Cieplnej, Politechnika Warszawska, 2004.
  • 150. Pyke, S., A. Burnett, and R. Leah, System development for planar SOFC based power plant, Tech. rep., ALSTOM Research and Technology Centre, 2002.
  • 151. Qi, Y., B. Huang, and J. Luo, Nonlinear state space modeling and simulation of a SOFC fuel cell, American Control Conference, 2006.
  • 152. Rabenstein, G., and V. Hacker, Hydrogen for fuel cells from ethanol by steam-reforming, partial-oxidation and combined auto-thermal reforming: A thermo-dynamic analysis, Journal of Power Sources, 185(2), 1293-1304, 2008.
  • 153. Rahman, F., and N. Minh, Solid oxide fuel cell hybrid system for distributed power generation, Tech. Rep. DEFC26-01NT40779, DOE/NETL, 2003.
  • 154. Rutkowska, D., Inteligentne systemy obliczeniowe - Algorytmy genetyczne i sieci neuronowe w systemach rozmytych, Akademicka Oficyna Wydawnicza PLJ, 1997.
  • 155. Sakai, N., and S. Stolen, Heat capacity and thermodynamic properties of lanthanum(iii) chromate(iii): LaCr03, at temperatures from 298.15 k. evaluation of the thermal conductivity, The Journal of Chemical Thermodynamics, 27(5), 493-506, 1995.
  • 156. Schell, M., Characterization of part-load performance of a combined gas turbine and solid oxide fuel cell, Tech. rep., European Fundation for Power Engineering, 2005.
  • 157. Services, E. T. (Ed.), Fuel Cell Handbook, EG&G Technical Services, 2004.
  • 158. Song, T. W., J. L. Sohn, J. Kim, T. S. Kim, S. T. Ro, and K. Suzuki, Performance analysis of a tubular solid oxide fuel cell/micro gas turbine hybrid power system based on a quasi-two dimensional model, Journal of Power Sources, 142, 30-42, 2005.
  • 159. Staniforth, J., and R. M. Ormerod, Implications for using biogas as a fuel source for solid oxide fuel cells: Internal dry reforming in a small tubular solid oxide fuel cell, Catalysis Letters, 81(1), 19-23, 2002.
  • 160. Staniszewski, B., Termodynamics (in Polish), Państwowe Wydawnictwo Naukowe, Warsaw, 1982.
  • 161. Stiller, C., Design, operation and control. modeling of sofc/gt hybrid systems, Phd thesis, Norwegian University of Science and Technology, 2006.
  • 162. Stiller, C., B. Thorud, S. Seljeb, O. Mathisen, H. Karoliussen, and O. Bolland, Finite-volume modeling and hybrid-cycle performance of planar and tubular solid oxide fuel cells, Journal of Power Sources, 141, 227-240, 2005.
  • 163. Subramanian, N., B. S. Haran, R. E. White, and B. N. Popov, Full cell mathematical model of a mcfc, Journal of The Electrochemical Society, 150(10), A1360-A1367, 2003.
  • 164. Suwanwarangkul, R., E. Croiset, E. Entchev, S. Charojrochkul, M. Pritzker, M. Fowler, P. Douglas, S. Chewathanakup, and H. Mahaudom, Experimental and modeling study of solid oxide fuel cell operating with syngas fuel, Journal of Power Sources, 161(1), 308-322, 2006.
  • 165. Tabata, Y., H. Orui, K. Watanabe, R. Chiba, M. Arakawa, and Y. Yamazaki, Direct internal reforming characteristics of sofc with a thin sasz electrolyte and a lnf cathode, Journal of The Electrochemical Society, 151(3), A418-A421, 2004.
  • 166. Tadeusiewicz, R., Sieci neuronowe, Akademicka Oficyna Wydawnicza, 1993.
  • 167. Tarnowski, O., and G. Agnew, Atmospheric and pressurised cycles for 1-2 MWe SOFC/GT hybrid systems, in 5th European SOFC Forum, 2002.
  • 168. Tarroja, B., F. Mueller, J. Maclay, and J. Brouwer, Parametric thermodynamic analysis of a solid oxide fuel cell gas turbine system design space, Journal of Engineering for Gas Turbines and Power, 132(7), 072,301, 2010.
  • 169. Torrero, E., and R. McClelland, Residential fuel cell demonstration handbook, Tech. rep., National Renewable Energy Laboratory, Colorado, 2002.
  • 170. Tuliszka, E., Turbiny cieplne - zagadnienia termodynamiczne i przepływowe, Wydawnictwa Naukowo-Techniczne, 1973.
  • 171. Łukasz Nikonowicz, and J. Milewski, Determination of electronic conductance of solid oxide fuel cells, Journal of Power Technologies, 91(2), 82-92, 2011.
  • 172. Żurada, J., M. Barski, and W. Jędruch, Sztuczne sieci neuronowe, Państwowe Wydawnictwo Naukowe, Warszawa, 1996.
  • 173. Veyo, S., K. Litzinger, S. Vora, and L.W.L., Status of pressurized SOFC/gas turbine power system development at Siemens Westinghouse, in Proceedings of ASME TURBO EXPO 2002, 2002.
  • 174. Vielstich, W., A. Lamm, and H. A. Gasteiger, Handbook of Fuel Cells - Fundamentals Technology Applications, John Wiley and Sons Ltd., 2003.
  • 175. Virkar, A., Theoretical analysis of the role of interfaces in transport through oxygen ion and electron conducting membranes, Journal of Power Sources, 147(1-2), 8-31, 2005.
  • 176. Virkar, A., and L. Wilson, Low-temperature, anode-supported high power density solid oxide fuel cells with nanostructured electrodes, Tech. rep., Department of Energy, USA, 2003.
  • 177. Wang, G., Y. Yang, H. Zhang, and W. Xia, 3-d model of thermo-fluid and electrochemical for planar sofc, Journal of Power Sources, 167(2), 398-405, 2007.
  • 178. Wang, K., D. Hissel, M. Pera, N. Steiner, D. Marra, M. Sorrentino, C. Pianese, M. Monteverde, P. Cardone, and J. Saarinen, A review on solid oxide fuel cell models, International Journal of Hydrogen Energy, 36(12), 7212-7228, 2011.
  • 179. Welty, J. R., C. E. Wicks, R. E. Wilson, and G. L. Rorrer, Fundamentals of Momentum, Heat and Mass Transfer, 5th ed., John Wiley and Sons, 2008.
  • 180. Weppner, W., Electronic transport properties and electrically induced p-n junction in zro2 + 10 m/o y2o3, Journal of Solid State Chemistry, 20(3), 305-314, 1977.
  • 181. Wu, X., X. Zhu, G. Cao, and H. Tu, Nonlinear modelling of a SOFG stack by improved neural networks identification, Zhejiang University Press, 8, 1505-1509, 2007.
  • 182. Wu, X., X. Zhu, G. Cao, and H. Tu, Modeling a SOFC stack based on ga-rbf neural networks identification, Journal of Power Sources, 167 (1), 145-150, 2007.
  • 183. Xi, H., J. Sun, and V. Tsourapas, A control oriented low order dynamic model for planar sofc using minimum gibbs free energy method, Journal of Power Sources, 165, 235-266, 2007.
  • 184. Yakabe, H., T. Ogiwara, M. Hishinuma, and I. Yasuda, 3-d model calculation for planar sofc, Journal of Power Sources, 102(1-2), 144-154, 2001.
  • 185. Yao Z. Z. Chunming, R. Ran, R. Cai Z. Shao, and D. Farrusseng, A new, symmetric solid oxide fuel cell with La0.8Sr0.2Sc0.2Mn0.8O3-Δ perovskite oxide as both the anode and cathode, Acta Materialia, 57(4), 1665-1175, 2009.
  • 186. Young, D., Computational Chemistry - a Practical Guide for Applying Techniques to Real-World Problems, John Wiley & Sons, Inc., New York, 2001.
  • 187. Young, D., A. Sukeshini, R. Cummins, H. Xiao, M. Rottmayer, and T. Reitz, Ink-jet printing of electrolyte and anode functional layer for solid oxide fuel cells, Journal of Power Sources, 184(1), 191-196, 2008.
  • 188. Zabihian, F., and A. Fung, A review on modeling of hybrid solid oxide fuel cell systems, International Journal of Engineering, 3, 85-119, 2009.
  • 189. Zając, W., and J. Molenda, Electrical conductivity of doubly doped ceria, Solid State Ionics, 179(1-6), 154-158, 2008.
  • 190. Zhai, H., W. Guan, Z. Li, C. Xu, and W. Wang, Research on performance of LSM coating on interconnect materials for SOFCs, Journal of the Korean Ceramic Society, 45(12), 777-781, 2008.
  • 191. Zhao, F., and A. Virkar, Dependence of polarization in anode-supported solid oxide fuel cells on various cell parameters, Journal of Power Sources, 141(1), 79-95, 2005.
  • 192. Zhou, L., M. Cheng, B. Yi, Y. Dong, Y. Cong, and W. Yang, Performance of an anode-supported tubular solid oxide fuel cell (sofc) under pressurized conditions, Electrochimica Acta, 53(16), 5195-5198, 2008.
  • 193. Zhou, W., H. Shi, R. Ran, R. Cai, Z. Shao, and W. Jin, Fabrication of an anode-supported yttria-stabilized zirconia thin film for solid-oxide fuel cells via wet powder spraying, Journal of Power Sources, 184(1), 229-237, 2008.
  • 194. Zhu, H., and R. J. Kee, A general mathematical model for analyzing the performance of fuel-cell membrane-electrode assemblies, Journal of Power Sources, 117(1-2), 61-74, 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d49a7d2d-eada-4b8e-a20b-1a0376c09584
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.