PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Structure and phase composition of newly developed high manganese X98MnAlSiNbTi24–11 steel of TRIPLEX type

Identyfikatory
Warianty tytułu
PL
Struktura i skład fazowy nowoopracowanej stali wysokomanganowej X98MnAlSiNbTi24-11 typu TRIPLEX
Języki publikacji
EN
Abstrakty
EN
The work presents the results of investigations of the structure and phase composition of newly developed high manganese X98MnAlSiNbTi24–11 steel of TRIPLEX type. The average density of such steel is 6.67 g/cm3, which is less than for typical structural steels by even 15%. A preliminary analysis of phase composition and structure allows to find an austenitic γ-Fe(Mn, Al, C) structure in the investigated steel with uniformly distributed ferritic α-Fe(Mn, Al) areas elongated towards the boundaries of austenite grains and numerous carbides with differentiated chemical composition and varied size. Nb- and Ti-based complex carbides are dominant in the steel. The investigations of the chemical composition of the carbides revealed in the matrix allow to identify with high probability dispersive κ-(Fe, Mn)3AlC carbides with the nanometric size of approx. 10÷160 nm, which has to be yet confirmed with electron transmission microscopy methods. Fe, Mn and Al as well as small amounts of Nb, Ti and Si are contained in such carbides. The occurrence of aluminium carbonitrides with a fraction of Nb and Ti was also revealed. The size of the above Nb and Ti carbides revealed in solid specimens in the matrix of the studied steel is between approx. 10 nm to 15 μm. X-ray diffraction examinations of carbide isolates prepared by the method of chemical dissolution in HCl showed the existence of NbTiC2 carbides in the studied steel. The diffraction examinations of solid specimens revealed, apart from austenite and ferrite, also the existence of TiC carbides and such initially classified as Mn3.6C0.4 type.
PL
Celem pracy była charakterystyka struktury i składu fazowego nowoopracowanej stali wysokomanganowej X98MnAlSiNbTi24–11 typu TRIPLEX zawierającej dodatki stopowe Ti i Nb przy dużej zawartości węgla.
Rocznik
Strony
69--76
Opis fizyczny
Bibliogr. 22 poz., fig., tab.
Twórcy
  • Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska, Gliwice
  • Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska, Gliwice
autor
  • Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska, Gliwice
  • Instytut Materiałów Inżynierskich i Biomedycznych, Politechnika Śląska, Gliwice
Bibliografia
  • [1] Eipper K., Frommeyer G., Fussnegger W., Gerick A., Kleineathoefer W.: High-strength DUPLEX/TRIPLEX steel for lightweight construction and use thereof. United States Patent Application Publication US 2007/0125454 A1 (2007).
  • [2] Dobrzański L. A., Borek W.: Mechanical properties and microstructure of high-manganese TWIP, TRIP and TRIPLEX type steels. Journal of Achievements in Materials and Manufacturing Engineering 55/2 (2012) 230÷238
  • [3] Grajcar A.: Nowoczesne stale wysokowytrzymałe dla motoryzacji II generacji. Stal Metale & Nowe Technologie 7/8 (2013) 10÷13.
  • [4] Mazancová E., Jonšta Z., Mazanec K.: Structural metallurgy properties of high manganese Fe–Mn–Al–C alloy. Hutnické listy 2 (2008) 60÷63.
  • [5] Kim H., Suh D., Kim N. J.: Fe–Al–Mn–C lightweight structural alloys: a review on the microstructures and mechanical properties. Science and Technology of Advanced Materials 14 (2013) 1÷11.
  • [6] Etienne A., Massardier-Jourdan V., Cazottes S., Garat X., Soler M., Zuazo I., Kleber X.: Ferrite effects in Fe–Mn–Al–C triplex steels. Metallurgical and Materials Transactions 45A (2014) 324÷334.
  • [7] Niewielski G., Kuc D., Cebulski J., Lalik S.: Microstructure and selected properties of Mn–Al duplex steels. Archives of Materials Science and Engineering 47/1 (2011) 11÷18.
  • [8] Bausch M., Frommeyer G., Hofmann H., Balichev E., Soler M., Didier M., Samek L.: Ultra high-strength and ductile FeMnAlC light-weight steels (MnAl-steel). European Commission Research Fund for Coal and Steel; Final report Grant agreement RFSR-CT-2006-00027 (2013) 5÷157.
  • [9] Kozłowski R. H.: Composite of austenitic-ferritic stainless steel. Journal of Materials Processing Technology 53 (1995) 239÷246.
  • [10] Dobrzański L. A., Borek W.: Hot-working of advanced high-manganese austenitic steels. Journal of Achievements in Materials and Manufacturing Engineering 43/2 (2010) 507÷526.
  • [11] Sohn S. S., Song H., Suh B. C., Suh J. C., Kwak J. H., Lee B. J., Kim N. J., Lee S.: Novel ultra-high-strength (ferrite + austenite) duplex lightweight steels achieved by fine dislocation substructures (Taylor lattices), grain refinement, and partial recrystallization. Acta Materialia 96 (2015) 301÷310.
  • [12] Takahashi M.: Development of high strength steels for automobiles. Nippon Steel Technical Report 88 (2003) 2÷7.
  • [13] Niewielski G., Hetmańczyk M., Kuc D.: Influence of the initial grain size and deformation parameters on the mechanical properties during hot plastic deformation of austenitic steels. Inżynieria Materiałowa 24 (2003) 795÷798.
  • [14] Mazancová E., Jonšta Z., Mazanec K.: Properties of high manganese Fe–Mn–Al–C alloys. Archives of Materials Science 28/1-4 (2007) 90÷94.
  • [15] Dobrzański L. A., Grajcar A., Borek W.: Microstructure evolution and phase composition of high-manganese austenitic steels. Journal of Achievements in Materials and Manufacturing Engineering 31/2 (2008) 218÷225.
  • [16] Dobrzański L. A., Grajcar A., Borek W.: Influence of hot-working conditions on a structure of high-manganese austenitic steels. Journal of Achievements in Materials and Manufacturing Engineering 29/2 (2008) 139÷142.
  • [17] Gutierrez-Urrutia I., Raabe D.: High strength and ductile low density austenitic FeMnAlC steels: Simplex and alloys strengthened by nanoscale ordered carbides. Materials Science and Technology 30/9 (2014) 1099÷1104.
  • [18] Pietryka I., Lisiak J.: The identification of carbide phases by XRD analysis as the method of assess the extent of the steel damage after long time in service. Archives of Foundary Engineering 3 (2010) 283÷288.
  • [19] Richter J., Wyciślik A., Cwajna J.: Preparation of carbide isolates of new high-speed steel for analysis by atomic absorption spectrometry. Mikrochimica Acta 130 (1998) 117÷122.
  • [20] Kucharska B., Krzywiecki M., Nowak T.: Structure and TRIP effect in AlSi300 steels after tensile deformation. Inżynieria Materiałowa 6 (2015) 409÷413.
  • [21] Ashby M. F.: Dobór materiałów w projektowaniu inżynierskim. Wydawnictwo Naukowo-Techniczne, Warszawa (1998).
  • [22] Tirumalasetty G. K., Fang C. M., Jansen J., Yokosawa T., Boeije M. F. J., Sietsma J., van Huis M. A., Zandbergen H. W.: Structural tale of two novel (Cr, Mn)C carbides in steel. Acta Materialia 78 (2014) 161÷172.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d49958dc-d51c-4e78-96f7-1773753cca45
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.