PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design of a Fractional Order Low-pass Filter Using a Differential Voltage Current Conveyor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, an active implementation of a differential voltage current conveyor (DVCC) based on a low-pass filter operating in the fractional order domain is presented. The transfer function for a fractional order system is dependent on the rational approximation of sα. Different methods used for calculating the rational approximation, including Carlson, Elkhazalil, and curve fitting, are evaluated here. Finally, to validate the theoretical results, a fractional order Butterworth filter is simulated in the Pspice environment using the 0.5 micrometer CMOS technology with an R-C network-based fractional order capacitor. Additionally, using the Monte Carlo analysis, the impact of current and voltage faults on DVCC response is investigated. It has been inferred that realization with a wider bandwidth is possible.
Rocznik
Tom
Strony
17--21
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
  • Department of Electronics and Communication Engineering, Lincoln University College, Petaling Jaya, Malaysia
  • Faculty of Computer Science and Multimedia, Lincoln University College, Kota Bharu, Malaysia
Bibliografia
  • [1] K.B. Oldham and J. Spanier, The Fractional Calculus. New York, USA: Academic Press, 1974 (ISBN: 9780486450018).
  • [2] G. Carlson and C. Halijak, ″Approximation of fractional capacitors (1/s) (1/n) by a regular Newton process″, IEEE Transactions on Circuit Theory, vol. 11, no. 2, pp. 210–213, 1964 (https://doi.org/10.1109/TCT.1964.1082270).
  • [3] B.T. Krishna, ″Studies on fractional order differentiators and integrators: A survey″, Signal Processing, vol. 91, no. 3, pp. 386–426, 2011 (https://doi.org/10.1016/j.sigpro.2010.06.022).
  • [4] A. Yüce and N. Tan, ″Electronic realization technique for fractional order integrators″, The Journal of Engineering, vol. 2020, no. 5, pp. 157–167, 2020 (https://doi.org/10.1049/joe.2019.1024).
  • [5] B.T. Krishna, ″Realization of fractance device using fifth order approximation″, Communications on Applied Electronics (CAE), vol. 7, no. 34, pp. 1–5, 2020 (https://doi.org/10.5120/cae2020652 869).
  • [6] Y. Wei, Y-Q. Chen, Y. Wei, and X. Zhang, ″Consistent approximation of fractional order operators″, Journal of Dynamic Systems, Measurement and Control, vol. 143, no. 8, 2021 (https://doi.org/10.1115/1.4050393).
  • [7] A. Kartci et al., ″Synthesis and optimization of fractionalorder elements using a genetic algorithm″, IEEE Access, vol. 7, pp. 80233–80246, 2019 (https://doi.org/10.1109/ACCESS.20 19.2923166).
  • [8] A.K. Mahmood and S.A.R. Saleh, ″Realization of fractional order differentiator by analogue electronic circuit″, International Journal of Advances in Engineering & Technology, vol. 8, no. 1, pp. 1939–1951, 2015 (https://doi.org/10.7323/ijaet/v8_iss1).
  • [9] S. Kapoulea, C. Psychalinos, and A.S. Elwakil, ″FPAA-based reization of filters with fractional Laplace operators of different orders″, Fractal and Fract., vol. 5, no. 4, pp. 218–228, 2021 (https://doi.org/10.3390/fractalfract5040218).
  • [10] M.S. Semary, M.E. Fouda, H.N. Hassana, and A.G. Radwan, ″Realization of fractional-order capacitor based on passive symmetric network″, Journal of Advanced Research, vol. 18, pp. 147–159, 2019 (https://doi.org/10.1016/j.jare.2019.02.004).
  • [11] V. Alimisis, Ch. Dimas, G. Pappas, and P.P. Sotiriadis, ″Analog realization of fractional-order skin-electrode model for tetrapolar bio-impedance measurements″, Technologies, vol. 8, no. 4, 2020, p. 61 (https://doi.org/10.3390/technologies8040061).
  • [12] N. Mijat, D. Jurisic, G.S. Moschytz, ″Analog modeling of fractional-order elements: A classical circuit theory approach″, IEEE Access, vol. 9, pp. 110309–10331, 2021 (https://doi.org/10.1109/ACCESS.2021.3101160).
  • [13] A.K. Mahmood and S.A.R. Saleh, ″Realization of fractional-order proportional-integral-derivative controller using fractance circuit″, JEA Journal of Electrical Engineering, vol. 2, no. 1, pp. 1–11, 2018 (https://doi.org/10.13140/RG.2.2.30942.69445).
  • [14] S. Holm, T. Holm, and Ø.G. Martinsen, ″Simple circuit equivalents for the constant phase element″, PLoS ONE, vol. 16, no. 3, 2021 (https://doi.org/10.1371/journal.pone.0248786).
  • [15] P. Prommee, N. Wongprommoon, and R. Sotner, ″Frequency tunability of fractance device based on OTA-C″, in 42nd International Conference on Telecommunications and Signal Processing (TSP2019), Budapest, Hungary, 2019 (https://doi.org/10.1109/TSP.20 19.8768816).
  • [16] P. Prommee, P. Pienpichayapong, N. Manositthichai, and N. Wongprommoon, ″OTA-based tunable fractional-order devices for biomedical engineering″, AEU – International Journal of Electronics and Communications, vol. 128, pp. 1–13, 2021 (https://doi.org/10.1016/j.aeue.2020.153520).
  • [17] S.K. Mishra, M. Gupta, and D.K. Upadhyay, ″Active realization of fractional order Butterworth lowpass filter using DVCC″, Journal of King Saud University, vol. 32, no. 2, pp. 158–165, 2020 (https://doi.org/10.1016/j.jksues.2018.11.005).
  • [18] D.K. Upadhyay and S.K. Mishra, ″Fractional order microwave lowpassbandpass filter″, in 2015 Annual IEEE India Conference (INDICON), New Delhi, India, 2015 (https://doi.org/10.1109/INDI-CON.2015.7443282).
  • [19] N. Shrivastava and P. Varshney, ″Implementation of Carlson based fractional differentiation in control of fractional plants″, I.J. Intelligent Systems and Applications, vol. 10, no. 9, pp. 66–74, 2018 (https://doi.org/10.5815/ijisa.2018.09.08).
  • [20] R. El-Khazali, I.M. Batiha, and S. Momani, ″Approximation of fractional-order operators″, in Fractional Calculus. ICFDA 2018, P. Agarwal, D. Baleanu, Y. Chen, S. Momani, and J. Machado, Eds. Springer Proceedings in Mathematics & Statistics, vol. 303. Singapore: Springer (https://doi.org/10.1007/978-981-15-0430-3_8).
  • [21] K. Bingi, R. Ibrahim, M. Karsiti, S. Hassam, and V. Harindran, ″Frequency response based curve fitting approximation of fractional-order PID controllers″, International Journal of Applied Mathematics and Computer Science, vol. 29, no. 2, pp. 311–326, 2019 (https://doi.org/10.2478/amcs-2019-0023).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d498f57c-0169-4919-a1fb-e0b831e34cff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.