PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Monitoring the performance of a ship’s main engine based on big data technology

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Under the recent background of ‘Green Shipping’ and rising fuel prices, it is very important to reduce the fuel consumption rate of ships, which is directly affected by the performance of the main engine. A reasonable maintenance schedule can optimise the performance of the main engine. However, a traditional maintenance schedule is based on the navigation distance and time, ignoring many other factors, such as a harsh working environments and frequently changing operating conditions, which will lead to faster performance degradation. In this study, a real-time evaluation method combing big data of ship energy efficiency with physics-based analysis is proposed to judge the degradation of main engine performance and assist in determining the maintenance schedule. Firstly, based on the developed ship energy efficiency big data platform, the distribution statistics and comparison of different operating states are carried out. Gaussian mixture model (GMM) and Density-Based Spatial Clustering of Applications with Noise (DBSCAN) are used to cluster the data and the high-density data areas are obtained as the analysis points. Then, the data of the analysis points are polynomial fitted, by the least square method, to obtain the propulsion characteristics curves, load characteristic curves, and speed characteristic curves, which can be used to observe the performance degradation of the main engine. The results show that this method can effectively monitor the degradation degree of the main engine performance, and is of great significance to fuel efficiency improvements and greenhouse gas (GHG) emissions reduction.
Rocznik
Tom
Strony
128--140
Opis fizyczny
Bibliogr. 37 poz., rys., tab.
Twórcy
autor
  • Shanghai Dianji University, Business School, Shanghai China
autor
  • Shanghai Maritime University, Merchant Marine College and Shanghai Engineering Research Center of Ship Intelligent Maintenance and Energy Efficiency, Shanghai China
Bibliografia
  • 1. B. Qiao, W. He, Y. Tian, Y. Liu, O. Cai, and Y. Li, “Ship emission reduction effect evaluation of air pollution control countermeasures,” Transportation Research Procedia, vol. 25, pp. 3606-3618, 2017, doi: 10.1016/j.trpro.2017.05.325.
  • 2. F. Jasper, H. Shinichi et al., “Fourth IMO Greenhouse Gas Study 2020,” International Maritime Organisation (IMO), London, UK, 2020.
  • 3. V. Kuznetsov, B. Dymo, S. Kuznetsova, M. Bondarenko, and A. Voloshyn, “Improvement of the cargo fleet vessels power plants ecological indexes by development of the exhaust gas systems,” Polish Maritime Research, vol. 28, pp. 97-104, 2021, doi: 10.2478/pomr-2021-0009.
  • 4. I. Ančić and A. Šestan, “Influence of the required EEDI reduction factor on the CO2 emission from bulk carriers,” Energy Policy, vol. 84, pp. 107-116, 2015, doi: 10.1016/j. enpol.2015.04.031.
  • 5. E.K. Hansen, H.B. Rasmussen, and M. Lützen, “Making shipping more carbon-friendly? Exploring ship energy efficiency management plans in legislation and practice,” Energy Research & Social Science, vol. 65, pp. 101459, 2020, doi: 10.1016/j.erss.2020.101459.
  • 6. M. Kalajdžić, M. Vasilev, and N. Momčilović, “Power Reduction Considerations for Bulk Carriers with respect to Novel Energy Efficiency Regulations,” Brodogradnja: Teorija i praksa brodogradnje i pomorske tehnike, vol. 73, pp. 79-92, 2022, doi: 10.21278/brod72205.
  • 7. L. Fedi, “The Monitoring, Reporting and Verification of Ships’ Carbon Dioxide Emissions: A European Substantial Policy Measure towards Accurate and Transparent Carbon Dioxide Quantification,” Ocean Yearbook Online, vol. 31, pp. 381-417, 2017, doi: 10.1163/22116001-03101015.
  • 8. W. Tarełko, “The effect of hull biofouling on parameters characterising ship propulsion system efficiency,” Polish Maritime Research, vol. 21, pp. 27-34, 2014, doi: 10.2478/ pomr-2014-0038.
  • 9. P. Król, «Hydrodynamic state of art review: rotor– stator marine propulsor systems design,» Polish Maritime Research, vol. 28, pp. 72-82, 2021, doi: 10.2478/ pomr-2021-0007.
  • 10. P. Puzdrowska, «Diagnostic information analysis of quickly changing temperature of exhaust gas from marine diesel engine. Part i single factor analysis,» Polish Maritime Research, vol. 28, pp. 97-106, 2021, doi: 10.2478/ pomr-2021-0052.
  • 11. P. Król, “Blade section profile array lifting surface design method for marine screw propeller blade,” Polish Maritime Research, vol. 26, pp. 134-141, 2019, doi: 10.2478/ pomr-2019-0075.
  • 12. K. Rudzki and W. Tarelko, “A decision-making system supporting selection of commanded outputs for a ship’s propulsion system with a controllable pitch propeller,” Ocean Engineering, vol. 126, pp. 254-264, 2016, doi: 10.1016/j.oceaneng.2016.09.018
  • 13. R. Varbanets, V. Zalozh, A. Shakhov, I. Savelieva, and V. Piterska, “Determination of top dead centre location based on the marine diesel engine indicator diagram analysis,” Diagnostyka, vol. 21, pp. 51-60, 2020, doi: 10.29354/diag/116585.
  • 14. S. Park, S. W. Park, S. H. Rhee, S. B. Lee, J. E. Choi, and S. H.Kang, “Investigation on the wall function implementation for the prediction of ship resistance,” International Journal of Naval Architecture and Ocean Engineering, vol. 5, pp. 33-46, 2013, doi: 10.2478/IJNAOE-2013-0116.
  • 15. M.B. Samsul, “Blade cup method for cavitation reduction in marine propellers,” Polish Maritime Research, 2021, doi: 10.2478/pomr-2021-0021, doi: 10.2478/pomr-2021-0021.
  • 16. M.H. Ghaemi, “Performance and emission modelling and simulation of marine diesel engines using publicly available engine data,” Polish Maritime Research, vol. 28, pp. 63-87, 2021, doi: 10.2478/pomr-2021-0050.
  • 17. B.D. Brouer, C.V. Karsten, and D. Pisinger, “Big data optimisation in maritime logistics,” Big data optimisation: Recent developments and challenges. Springer, Cham, vol. 18, pp. 319-344, 2016, doi: 10.1007/978-3-319-30265-2_14.
  • 18. X. Zeng and M. Chen, “A Novel Big Data Collection System for Ship Energy Efficiency Monitoring and Analysis Based on BeiDou System,” Journal of Advanced Transportation, vol. 2021, pp.1-10, 2021, doi: 10.1155/2021/9914720.
  • 19. I. Zaman, K. Pazouki, R. Norman, S. Younessi, and S.Coleman, “Challenges and opportunities of big data analytics for upcoming regulations and future transformation of the shipping industry,” Procedia engineering, vol. 194, pp. 537-544, 2017, doi: 10.1016/j. proeng.2017.08.182.
  • 20. A. Fan, X. Yan, and Q. Yin, “A multisource information system for monitoring and improving ship energy efficiency,” Journal of Coastal Research, vol.32, pp. 1235- 1245, 2016, doi: 10.2112/JCOASTRES-D-15-00234.1.
  • 21. J. Deng, J. Zeng, S. Mai, B. Jin, B. Yuan, Y. You. S. Lu, and M.Yang, «Analysis and prediction of ship energy efficiency using 6G big data internet of things and artificial intelligence technology,» International Journal of System Assurance Engineering and Management, vol. 12, pp. 824– 834, 2021, doi: 10.1007/s13198-021-01116-9.
  • 22. T. Niksa-Rynkiewicz, N. Szewczuk-Krypa, A. Witkowska, K. Cpałka, M. Zalasiński, and A. Cader, “Monitoring regenerative heat exchanger in steam power plant by making use of the recurrent neural network,” Journal of Artificial Intelligence and Soft Computing Research, vol. 11, pp. 143-155, 2021, doi: 10.2478/jaiscr-2021-0009.
  • 23. A. Witkowska and T. Niksa-Rynkiewicz, «Dynamically positioned ship steering making use of backstepping method and artificial neural networks,» Polish Maritime Research, vol. 25, pp. 5-12, 2018, doi: 10.2478/pomr-2018-0126.
  • 24. S. García, J. Luengo, and F. Herrera, “Data preprocessing in data mining,” Cham, Switzerland: Springer International Publishing, vol. 72, pp. 59-139, 2015, doi: 10.1007/978-3-319-10247-4.
  • 25. L.P. Perera and B. Mo, “Ship performance and navigation information under high-dimensional digital models,” Journal of Marine Science and Technology, vol. 25(1), pp. 59-139, 2020, doi: 10.1007/978-3-319-10247-4.
  • 26. Y. Raptodimos and I. Lazakis, “Using artificial neural network-self-organising map for data clustering of marine engine condition monitoring applications,” Ships and Offshore Structures, vol. 13, pp. 649-656, 2018, doi: 10.1080/17445302.2018.1443694.
  • 27. E. Vanem and A. Brandsæter, “Unsupervised anomaly detection based on clustering methods and sensor data on a marine diesel engine,” Journal of Marine Engineering & Technology, vol. 20, pp. 217-234, 2021, doi: 10.1080/20464177.2019.1633223.
  • 28. L. P. Perera, and B. Mo, “Data analytics for capturing marine engine operating regions for ship performance monitoring,” International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical Engineers, 2016, Vol. 49989, doi: 10.1115/OMAE2016-54168
  • 29. L. P. Perera, and B. Mo, “Marine engine operating regions under principal component analysis to evaluate ship performance and navigation behaviour,” IFAC-PapersOnLine, vol. 49(23), pp. 512-517, 2016, doi: 10.1016/j. ifacol.2016.10.487.
  • 30. X. Yan, K. Wang, Y. Yuan, X. Jiang, and R. R. Negenborn, “Energy-efficient shipping: An application of big data analysis for optimizing engine speed of inland ships considering multiple environmental factors,” Ocean Engineering, vol. 169, pp. 457-468, 2018, doi: 10.1016/j. oceaneng.2018.08.050.
  • 31. K. Wang, X. Yan, Y. Yuan, X. Jiang, G. Lodewijks, and R. R. Negenborn, «Study on route division for ship energy efficiency optimisation based on big environment data,» 2017 4th International Conference on Transportation Information and Safety (ICTIS), IEEE, pp. 111-116, 2017, doi: 10.1109/ICTIS.2017.8047752.
  • 32. R. Adland, P. Cariou, H. Jia, and F. C. Wolff, “The energy efficiency effects of periodic ship hull cleaning,” Journal of Cleaner Production, vol. 178, pp. 1–13, 2018, doi: 10.1016/j. jclepro.2017.12.247.
  • 33. O. Loyola-Gonzalez, “Black box vs. white-box: Understanding their advantages and weaknesses from a practical point of view, “ IEEE Access, vol. 7, pp. 154096– 154113, 2019, doi: 10.1109/ACCESS.2019.2949286.
  • 34. X. Zeng, M. Chen, H. Li and X. Wu, “A Data-Driven Intelligent Energy Efficiency Management System for Ships,” IEEE Intelligent Transportation Systems Magazine, doi: 10.1109/MITS.2022.3153491.
  • 35. M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” kdd, vol. 96, pp. 226-231, 1996.
  • 36. R. Varbanets, V. Klymenko, O. Fomin, V. Píštěk, P. Kučera, D. Minchev, A. Khrulev, and V. Zalozh, “Acoustic method for estimation of marine low-speed engine turbocharger parameters,” Journal of Marine Science and Engineering, vol. 9, 2021, doi: 10.3390/jmse9030321.
  • 37. A. GéRon, “Hands-on Machine Learning with Scikit-Learn and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems”. Sebastopol, CA, USA: O’Reilly Media, 2017.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d49769f2-dcf0-4e24-ad68-2e308c821541
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.