Identyfikatory
Warianty tytułu
Photocatalysts and photoelectrocatalysts for hydrogen peroxide synthesis
Języki publikacji
Abstrakty
A significant contemporary challenge in the field of science and technology pertains to the development of innovative and sustainable methods for energy acquisition. The dynamic advancement of solar energy conversion techniques has led to the swift commercialization of photovoltaic cell technology, concomitantly creating a demand for cost-effective energy conversion and storage systems. An interesting solution to this challenge lies in the application of photocatalytic and photoelectrocatalytic synthesis to produce energy-rich molecules. One of the possible solutions under consideration in this context is hydrogen peroxide artificial photosynthesis. In recent years, several research efforts have been dedicated to the photo-assisted generation of hydrogen peroxide through oxygen reduction and water oxidation. In this brief review, the fundamental aspects related to photocatalytic and photoelectrocatalytic processes have been presented. Particular attention was paid to issues related to various groups of active photo(electro)catalysts used in the synthesis of hydrogen peroxide, and the latest trends in the molecular engineering of these compounds were highlighted.
Wydawca
Czasopismo
Rocznik
Tom
Strony
1017--1040
Opis fizyczny
Bibliografia 52 poz., rys.
Twórcy
autor
- Katedra Chemii i Technologii Polimerów, Wydział Chemiczny, Politechnika Warszawska, ul. Noakowskiego 3, 00-664 Warszawa, Polska
- Bioelectronics Materials and Devices Laboratory Central European Institute of Technology Brno University of Technology, Purkyňova 123, Brno 61200, Czechy
Bibliografia
- [1] R. S. Disselkamp, Energy Fuels, 2008, 22, 2771.
- [2] E. Miglbauer, P. J. Wójcik, E. D. Głowacki, Chem. Commun., 2018, 54, 11873.
- [3] S. A. Mousavi Shaegh, S. M. Mousavi Ehteshami, S. H. Chan, N.-T. Nguyen, S. N. Tan, RSC Adv., 2014, 4, 37284.
- [4] K. Mase, M. Yoneda, Y. Yamada, S. Fukuzumi, Nat Commun, 2016, 7, 11470.
- [5] J. M. Campos-Martin, G. Blanco-Brieva, J. L. G. Fierro, Angew. Chem. Int. Ed., 2006, 45, 6962.
- [6] C. Oloman, A. P. Watkinson, J. Appl. Electrochem., 1979, 9, 117.
- [7] K. Oka, B. Winther‐Jensen, H. Nishide, Adv. Energy Mater., 2021, 11, 2003724.
- [8] Y. Sun, L. Han, P. Strasser, Chem. Soc. Rev., 2020, 49, 6605.
- [9] X. Zeng, Y. Liu, X. Hu, X. Zhang, Green Chem., 2021, 23, 1466.
- [10] E. Baur, C. Neuweiler, Helvetica Chimica Acta, 1927, 10, 901.
- [11] T. R. Rubin, J. G. Calvert, G. T. Rankin, W. MacNevin, J. Am. Chem. Soc., 1953, 75, 2850.
- [12] Y. Shiraishi, S. Kanazawa, D. Tsukamoto, A. Shiro, Y. Sugano, T. Hirai, ACS Catal., 2013, 3, 2222.
- [13] R. E. Stephens, B. Ke, D. Trivich, J. Phys. Chem., 1955, 59, 966.
- [14] V. Maurino, C. Minero, G. Mariella, E. Pelizzetti, Chem. Commun., 2005, 2627.
- [15] V. Maurino, C. Minero, E. Pelizzetti, G. Mariella, A. Arbezzano, F. Rubertelli, Res. Chem. Intermed., 2007, 33, 319.
- [16] M. Teranishi, S. Naya, H. Tada, J. Am. Chem. Soc., 2010, 132, 7850.
- [17] D. Tsukamoto, A. Shiro, Y. Shiraishi, Y. Sugano, S. Ichikawa, S. Tanaka, T. Hirai, ACS Catal., 2012, 2, 599.
- [18] L. Zheng, H. Su, J. Zhang, L. S. Walekar, H. Vafaei Molamahmood, B. Zhou, M. Long, Y. H. Hu, Appl. Catal. B: Environ., 2018, 239, 475.
- [19] H. Hou, X. Zeng, X. Zhang, Angew Chem Int Ed, 2020, 59, 17356.
- [20] A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.-O. Müller, R. Schlögl, J. M. Carlsson, J. Mater. Chem., 2008, 18, 4893.
- [21] Y. Shiraishi, S. Kanazawa, Y. Sugano, D. Tsukamoto, H. Sakamoto, S. Ichikawa, T. Hirai, ACS Mater. Chem., 2008, 18, 4893.
- [22] G. Moon, M. Fujitsuka, S. Kim, T. Majima, X. Wang, W. Choi, ACS Catal., 2017, 7, 2886.
- [23] P. Zhang, Y. Tong, Y. Liu, J. J. M. Vequizo, H. Sun, C. Yang, A. Yamakata, F. Fan, W. Lin, X. Wang, W. Choi, Angew Chem Int Ed, 2020, 59, 16209.
- [24] X. Chang, J. Yang, D. Han, B. Zhang, X. Xiang, J. He, Catalysts 2018, 8, 147.
- [25] G. Zuo, S. Liu, L. Wang, H. Song, P. Zong, W. Hou, B. Li, Z. Guo, X. Meng, Y. Du, T. Wang, V. A. L. Roy, Catal. Commun. 2019, 123, 69.
- [26] Y. Shiraishi, S. Kanazawa, Y. Kofuji, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, Angew. Chem. Int. Ed., 2014, 53, 13454.
- [27] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Tanaka, S. Ichikawa, T. Hirai, ACS Catal., 2016, 6, 7021.
- [28] Y. Kofuji, S. Ohkita, Y. Shiraishi, H. Sakamoto, S. Ichikawa, S. Tanaka, T. Hirai, ACS Sustainable Chem. Eng., 2017, 5, 6478.
- [29] A. Pron, P. Gawrys, M. Zagorska, D. Djurado, R. Demadrille, Chem. Soc. Rev., 2010, 39, 2577.
- [30] M. Jakešová, D. H. Apaydin, M. Sytnyk, K. Oppelt, W. Heiss, N. S. Sariciftci, E. D. Głowacki, Adv. Funct. Mater., 2016, 26, 5248.
- [31] M. K. Węcławski, M. Jakešová, M. Charyton, N. Demitri, B. Koszarna, K. Oppelt, S. Sariciftci, D. T. Gryko, E. D. Głowacki, J. Mater. Chem. A, 2017, 5, 20780.
- [32] M. Gryszel, A. Markov, M. Vagin, E. D. Głowacki, J. Mater. Chem. A, 2018, 6, 24709.
- [33] M. Gryszel, R. Rybakiewicz, E. D. Głowacki, Adv. Sustainable Syst., 2019, 3, 1900027.
- [34] M. Gryszel, T. Schlossarek, F. Würthner, M. Natali, E. D. Głowacki, ChemPhotoChem, 2023, 7, e202300070.
- [35] J. Kosco, F. Moruzzi, B. Willner, I. McCulloch, Adv. Energy Mater., 2020, 10, 2001935.
- [36] U. Mehmood, A. Al-Ahmed, I. A. Hussein, Renew. Sust. Energ. Rev., 2016, 57, 550.
- [37] C. B. Nielsen, I. McCulloch, Prog. Polym. Sci., 2013, 38, 2053.
- [38] S. M. Mousavi, S. A. Hashemi, S. Bahrani, K. Yousefi, G. Behbudi, A. Babapoor, N. Omidifar, C. W. Lai, A. Gholami, W.-H. Chiang, Int. J. Mol. Sci., 2021, 22, 6850.
- [39] T. Kenmochi, E. Tsuchida, M. Kaneko, A. Yamada, Electrochim. Acta, 1985, 30, 1405.
- [40] K. Oka, O. Tsujimura, T. Suga, H. Nishide, B. Winther-Jensen, Energy Environ. Sci., 2018, 11, 1335.
- [41] W. Fan, B. Zhang, X. Wang, W. Ma, D. Li, Z. Wang, M. Dupuis, J. Shi, S. Liao, C. Li, Energy Environ. Sci., 2020, 13, 238.
- [42] K. Oka, H. Nishide, B. Winther‐Jensen, Adv. Sci., 2021, 8, 2003077.
- [43] R. Wei, M. Gryszel, L. Migliaccio, E. D. Głowacki, J. Mater. Chem. C, 2020, 8, 10897.
- [44] R. Gańczarczyk, R. Rybakiewicz‐Sekita, M. Gryszel, J. Drapała, M. Zagórska, E. D. Głowacki, Adv Materials Inter, 2023, 10, 2300270.[45] Y. Shiraishi, T. Takii, T. Hagi, S. Mori, Y. Kofuji, Y. Kitagawa, S. Tanaka, S. Ichikawa, T. Hirai, Nat. Mater., 2019, 18, 985.
- [46] L. Migliaccio, M. Gryszel, V. Đerek, A. Pezzella, E. D. Głowacki, Mater. Horiz., 2018, 5, 984.
- [47] K. Fuku, K. Sayama, Chem. Commun., 2016, 52, 5406.
- [48] J. H. Baek, T. M. Gill, H. Abroshan, S. Park, X. Shi, J. Nørskov, H. S. Jung, S. Siahrostami, X. Zheng, ACS Energy Lett., 2019, 4, 720.
- [49] K. Fuku, Y. Miyase, Y. Miseki, T. Gunji, K. Sayama, RSC Adv., 2017, 7, 47619.
- [50] J. Zhang, X. Chang, Z. Luo, T. Wang, J. Gong, Chem. Commun., 2018, 54, 7026.
- [51] C. Cheng, W.-H. Fang, R. Long, O. V. Prezhdo, JACS Au, 2021, 1, 550.
- [52] R. Gańczarczyk, Elektroaktywne pochodne benzotiadiazolu, benzooksadiazolu i benzoselenadiazolu: synteza, właściwości spektroskopowe i elektrochemiczne oraz zastosowanie w procesach fotokatalitycznego wytwarzania nadtlenku wodoru, Politechnika Warszawska, 2022.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d496df1f-c4dd-4f8a-b660-7a8fa2df8b53