PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Environmental Assessment of a Unique Filtration Process for Treatment of Polluted Storm Water

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
As a result of poor human activities, storm water is now contaminated, notably in the Middle East. The filtering process is a physical separation with no chemical reactions occurring throughout the operation. The goal of this research is to use three distinct types of filters to improve the quality of storm water: sand, sand with granular activated carbon (GAC), and sand with cotton. Before and after treatment, the pH, turbidity, electric conductivity, TDS, and temperature of storm water are all monitored. In addition, the water quality index (WQI) was computed. The parameters of treated storm water varied depending on the filter media used, such as sand (turbidity = 83 NTU, TDS = 585 mg/L, conductivity = 1190 S/cm, pH = 7.1 and temperature =17.8 °C), sand with GAC (turbidity = 12NTU, TDS = 540 mg/L, conductivity = 910 S/cm, pH = 7 and temperature =18 °C) and sand with cotton (turbidity = 6.4 NTU, TDS = 490 mg/L, conductivity = 1090 μS/cm, pH = 7.2 and temperature =17.6 °C). Sand has a treatment efficiency of 63.6 percent, sand with GAC has an efficiency of 84.9 percent, and sand with cotton has an efficiency of 84.2 percent at a flow rate of 0.66 L/min, when WQI is clean. With GAC, it is clear that the dual media filter is the finest special sand.
Twórcy
  • Collage of Engineering, AL-Qasim Green University, Babylon, 51031, Iraq
  • Faculty of Engineering, University of Kufa, Al-Najaf, Iraq
  • Collage of Engineering, AL-Qasim Green University, Babylon, 51031, Iraq
  • Faculty of Engineering, University of Kufa, Al-Najaf, Iraq
  • Collage of Engineering, AL-Qasim Green University, Babylon, 51031, Iraq
Bibliografia
  • 1. Bai, R., Tien, C. 1997. Particle detachment in deep bed filtration. J. Colloid Interface Sci., 186, 307–317.
  • 2. Zouboulis, A., Traskas, G., Samaras, P. 2007. Comparison of single and dual media filtration in a fullscale drinking water treatment plant. Desalination, 213, 334–342.
  • 3. Asano, T., Burton, F., Leverenz, H. 2007. Removal of Residual Particulate Matter. In Water Reuse: Issues, Technologies and Application, McGraw-Hill: New York, NY, USA.
  • 4. Voutchkov, N. 2010. Considerations for selection of seawater filtration pretreatment system. Desalination, 261, 354–364.
  • 5. Logsdon, G.S., Horsley, M.B., Freeman, S.D.N., Neemann, J.J., Budd, G.C. 2006. Filtration processes - A distinguished history and a promising future. J. Am. Water Works Assoc., 98, 150–162.
  • 6. Collins, M.R., Eighmy, T.T., Fenstermacher, J.M., Spanos, S.K. 1996. Using granular media amendments to enhance NOM removal. J. Am. Water Works Assoc., 88, 48–61.
  • 7. Twort, A.C., Ratnayaka, D.D., Brandt, M.J. 2000. Water Supply, 3rd ed., Butterworth-Heinemann: Oxford, MA, USA.
  • 8. Tebbutt, T.H.Y. 1998. Principles of Water Quality Control, 5th ed., Butterworth-Heinemann: Oxford, UK.
  • 9. McGivney, W., Kawamura, S. 2008. Cost Estimating Manual for Water Treatment Facilities, John Wiley & Sons, Inc.: Hoboken, NJ, USA.
  • 10. Gray, N.F. 2010. Water Technology, 3rd ed., IWA Publishing: London, UK.
  • 11. O’Melia, C.R. 1985. Particles, Pretreatment and Performance in water filtration. J. Environ. Eng., 111, 874–890.
  • 12. Jegatheesan, V., Vigneswaran, S. 2005. Deep Bed Filtration: Mathematical Models and Observations. Crit. Rev. Environ. Sci. Technol., 35, 515–569.
  • 13. Ison, C.R., Ives, K.J. 1969. Removal mechanisms in deep bed filtration. Chem. Eng. Sci., 24, 717–729.
  • 14. Ives, K.J. 1970. Rapid Filtration. Water Res., 4, 201–223.
  • 15. Zamani, A., Maini, B. 2009. Flow of dispersed particles through porous media – deep bed filtration. J. Pet. Sci. Eng., 69, 71–88.
  • 16. Cleasby, J.L., Logsdon, G.S. 1999. Granular bed and precoat filtration. In Water Quality and Treatment: A Handbook of Community Water Supplies, Letterman, R.D., Ed., McGraw-Hill: New York, NY, USA.
  • 17. Rajagopolan, R., Tien, C. 1977. Single collector analysis of collection mechanisms in water filtration. Can. J. Chem. Eng., 55, 246–255.
  • 18. Joshi, D.M., Kumar, A., Agrawal, N. 2009. Studies on physicochemical parameters to assess the water quality of river Ganga for drinking purpose in Hardwar district. Rasayan Journal Chem, 2(1), 195–203.
  • 19. Chaturvedi, M.K., Bassin, J.K. 2009. Assessing the water quality index of water treatment plant and bore wells, in Delhi, India. Environ. Monit. Assess., 163(1/4), 449–453.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d492abb0-5565-40c2-a62e-a2413f97472e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.