Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Most soils possess a large supply of nutrients, but these reserves cannot be mobilized by plants, as they exist in a bound form. Therefore, it is need to understand mechanisms that naturally increase the acquisition of nutrients by plants. Earthworms are crucial soil engineers that play a key role in soil functioning. In this study we have estimated the impact of three factors, earthworm species, ecological group, and soil type, on the ion content of casts of Eisenia nordenskioldi, E. ventripapillata, E. nana, Lumbricus rubellus, and Aporrectodea caliginosa. Laboratory experiments were performed in microcosms on three soil types. We analyzed five water-soluble cations and six anions in the earthworm casts by capillary zone electrophoresis to determine their content in casts compared to soil. For three of the five species studied this is the first information obtained on the matter. The obtained data demonstrated that soil type has the biggest impact on the observed changes in the cast ion content, probably due to the differences in the initial concentrations and soil properties. Within each soil type, the observed effects were mostly species-specific, and the species belonging to the same ecological group (endogeic and epi-endogeic) did not have similar effects. The exposure to different earthworm species resulted in pronounced differences in the concentrations of magnesium, calcium, ammonium, and chloride, while the soil type had the highest impact on sulfate, fluoride, acetate, and sodium ions. Therefore, the terms ‘ecological group’ and ‘functional group’ are not equivalent for earthworm casts, and replacing an earthworm species with another belonging to the same ecological group may result in changes of the soil ion composition.
Czasopismo
Rocznik
Tom
Strony
96--110
Opis fizyczny
Bibliogr. 66 poz., rys., tab.
Twórcy
autor
- Research Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University, nab. Tukhachevskogo, 14, Omsk 644099, Russia
autor
- Research Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University, nab. Tukhachevskogo, 14, Omsk 644099, Russia
autor
- Research Laboratory of Systematics and Ecology of Invertebrates, Omsk State Pedagogical University, nab. Tukhachevskogo, 14, Omsk 644099, Russia
autor
- Department of Mathematics and Mathematics Teaching Methods, Omsk State Pedagogical University, nab. Tukhachevskogo, 14, Omsk 644099, Russia
autor
- Biochemistry Research Laboratory, Omsk State Pedagogical University, nab. Tukhachevskogo, 14, Omsk 644099, Russia
Bibliografia
- 1. Aira M., Monroy F., Domínguez J. 2003 – Effects of two species of earthworms (Allolobophora spp.) on soil systems: a microfaunal and biochemical analysis – Pedobiologia, 47: 877-881.
- 2. Barois I., Lavelle P., Brossard M. Tondoh, J. Martínez M. A. Rossi J. P., Moreno A. G. 1999 – Ecology of Species With Large Environmental Tolerance and/or Extended Distributions (In: Earthworm Management in Tropical Agroecosystems, Eds: P. Lavelle, L. Brussaard, P. F. Hendrix) – CAB International, Wallingford, U.K. 57.85.
- 3. Bityutskii N. P., Kaidun P. I. 2008 – The influence of earthworms on the mobility of microelements in soil and their availability for plants – Eurasian Soil Science, 41: 1306-1313.
- 4. Błonska E., Lasota J., Gruba P. 2016 – Effect of temperate forest tree species on soil dehydrogenase and urease activities in relation to other properties of soil derived from loess and glaciofluvial sand – Ecol. Res. 31: 655-664.
- 5. Bottinelli N., Capowiez Y. 2021 – Earthworm ecological categories are not functional groups – Biol. Fert. Soils, 57: 329-331.
- 6. Bottinelli N., Hallaire V., Menasseri-Aubry S., Le Guillou C., Cluzeau D. 2010 – Abundance and stability of belowground earthworm casts influenced by tillage intensity and depth – Soil Till. Res. 106: 263-267.
- 7. Bottinelli N., Jouquet P., Capowiez Y., Podwojewski P., Grimaldi M., Peng X. 2015 – Why is the influence of soil macrofauna on soil structure only considered by soil ecologists? – Soil Till. Res. 146: 118-124.
- 8. Bouché M. B. 1972 – Lombriciens de France. Ecologie et Systématique – INRA, Paris, 671 pp.
- 9. Bouché M. B. 1977 – Stratégies lombriciennes (In: Soil organisms as components of ecosystems, Eds: U. Lohm, T. Persson) – Ecology Bulletin, Stockholm, pp. 122-132.
- 10. Briones M. J. I., Ostle N. J., Piearce T. G. 2008 – Stable isotopes reveal that the calciferous gland of earthworms is a CO2-fixing organ – Soil Biol. Biochem. 40: 554-557.
- 11. Bron C., Kerbosch J. 1973 – Algorithm 457: Finding All Cliques of an Undirected Graph [H] – Communications of the ACM, 16: 575-577.
- 12. Brown G. G., Barois I., Lavelle P. 2000 – Regulation of soil organic matter dynamics and microbial activity in the drilosphere and the role of interactions with other edaphic functional domains – Eur. J. Soil Biol. 36: 177-198.
- 13. Canti M. G., Piearce T. G. 2003 – Morphology and dynamics of calcium carbonate granules produced by different earthworm species – Pedobiologia, 47: 511-521.
- 14. Carpenter D., Hodson M. E., Eggleton P., Kirk C. 2007 – Earth worm induced mineral weathering: preliminary results – Eur. J. Soil Biol. 43: 176-183.
- 15. Carson J. K., Campbell, L., Rooney D., Clipson N., Gleeson, D. B. 2009 – Minerals in soil select distinct bacterial communities in their microhabitats – FEMS Microbiol. Ecol. 67: 381-388.
- 16. Chapuis-Lardy L., Brauman A., Bernard L., Pablo A. L., Toucet J., Mano M. J., Weber L., Brunet D., Razafimbelo T., Chotte J. L., Blanchart E. 2010 – Effect of the endogeic earthworm Pontoscolex corethrurus on the microbial structure and activity related to CO2 and N2O fluxes from a tropical soil (Madagascar) – Appl. Soil Ecol. 45: 201-208.
- 17. Clause J., Barot S., Richard B., Decaёns T., Forey E. 2014 – The interactions between soil type and earthworm species determine the properties of earthworm casts – Appl. Soil Ecol. 83: 149-158.
- 18. Curry J. P., Schmidt O. 2007 – The feeding ecology of earthworms-a review – Pedobiologia, 50: 463-477.
- 19. De Vleeschauwer D., Lal. R. 1981 – Properties of worm casts under secondary tropical forest regrowth – Soil Sci. 132: 171-181.
- 20. Don A., Schulze E. D. 2008 – Controls on fluxes and export of dissolved organic carbon in grasslands with contrasting soil types – Biogeochemistry, 91: 117-131.
- 21. Doube B. M., Schmidt O., Killham K., Correll R. 1997 – Influence of mineral soil on the palatability of organic matter for lumbricid earthworms: a simple food preference study – Soil Biol. Biochem. 29: 569-575.
- 22. Drake H. L., Horn M. A. 2007 – As the worm turns: the earthworm gut as a transient habitat for soil microbial biomes – Annu. Rev. Microbiol. 61: 169-189.
- 23. Durand T. C., Hausman J. F., Carpin S., Alberic P., Baillif P., Label P., Morabito D. 2010 – Zinc and cadmium effects on growth and ion distribution in Populus tremula × Populus alba – Biol. Plantarum, 54:191-194.
- 24. Ferlian O., Thakur M. P., Gonzalez A., Emeterio L., Marr S., Rocha B., Eisenhauer N. 2020 – Soil chemistry turned upside down: a meta-analysis of invasive earthworm effects on soil chemical properties – Ecology, 101: e02936.
- 25. Godfray H. C. J., Beddington J. R., Crute I. R., Haddad L., Lawrence D., Muir J. F., Pretty J., Robinson S., Thomas S. M., Toulmin C. 2010 – Food security: the challenge of feeding 9 billion people – Science, 327: 812-818.
- 26. Golovanova E. V. 2019 – Alien species of earthworms in Western Siberia (In: Ecology and evolution: new horizons: materials of Intern. symposium dedicated. 100th anniversary of Academician S. S. Schwartz, Eds: K. I. Ushakova, D. V. Veselkin, A. G. Vasiliev) – Yekaterinburg: Humanitarian University, pp. 494-495 (in Russian).
- 27. Gomez-Brandon M., Aira M., Lores M., Domínguez J. 2011 – Epigeic earthworms exert a bottleneck effect on microbial communities through gut associated processes – PLoS ONE, 6: e24786.
- 28. Hatten J., Liles G. 2015 – A "healthy" balance: the role of physical and chemical properties in maintaining forest soil function in a changing world (In: Global Change and Forest Soils: Cultivating Stewardship of a Finite Natural Resource, Eds: M. Busse, D. S. Page-Dumroese, D. M. Morris, C. P. Giardana) – Developments in Soil Science, Elsevier, Amsterdam, the Netherlands, 36: pp. 373-396.
- 29. Haynes R. J., Fraser P. M., Piercy J. E., Tregurtha R. J. 2003 – Casts of Aporrectodea caliginosa (Savigny) and Lumbricus rubellus (Hoffmeister) differ in microbial activity, nutrient availability and aggregate stability – Pedobiologia, 47: 882-887.
- 30. Heine O., Larink O. 1993 – Food and cast analyses as a parameter of turn-over of materials by earthworms (Lumbricus terrestris L.) – Pedobiologia, 37: 245-256.
- 31. Hendrix P. F., Callaham M. A., Drake J. M., Huang C. Y., James S. W., Snyder B. A., Zhang W. 2008 – Pandora's Box Contained Bait: The Global Problem of Introduced Earthworms – Annu. Rev. Ecol. Evol. Syst. 39: 593-613.
- 32. Holland T. C., Bowen P. A., Bogdanoff C. P., Lowery T. D., Shaposhnikova O., Smith S. Hart M. M. 2016 – Evaluating the diversity of soil microbial communities in vineyards relative to adjacent native ecosystems – Appl. Soil Ecol. 100: 91-103.
- 33. Huang W., Gonzalez G., Zou X. 2020 – Earth worm abundance and functional group diversity regulate plant litter decay and soil organic carbon level: A global meta-analysis – Appl. Soil Ecol. 150: 1-15.
- 34. IUSS, 2015 – IUSS Working Group World Reference Base for Soil Resources 2014 – FAO, Rome, Italy.
- 35. Jacoby R., Peukert M., Succurro A., Koprivova A., Kopriva S. 2017 – The role of soil microorganisms in plant mineral nutrition-current knowledge and future directions – Front. Plant Sci. 8: 16-17.
- 36. Jiang Y., Liu M., Zhang J., Chen Y., Chen X., Chen L., Li H., Zhang X. X., Sun B. 2017 – Nematode grazing promotes bacterial community dynamics in soil at the aggregate level – ISME J. 11: 2705-2717.
- 37. Jouquet P., Bernard-Reversat F., Bottinelli N., Orange D., Rouland-Lefèvre C., Duc T. T., Podwojewski P. 2007 – Influence of changes in land use and earthworm activities on carbon and nitrogen dynamics in a steepland ecosystem in Northern Vietnam – Biol. Fert. Soils, 44: 69-77.
- 38. Jouquet P., Bottinelli N., Podwojewski P., Hallaire V., Tran Duc T. 2008 – Chemical and physical properties of earthworm casts as compared to bulk soil under a range of different land-use systems in Vietnam – Geoderma, 146: 231-238.
- 39. Kostina N. V., Bogdanova T. V., Umarov M. M. 2011 – Biological activity of the coprolites of earthworms – Moscow Univ. Soil Sci. Bull. 66: 18-23.
- 40. Kurovsky A. V., Petrochenko K. A., Godymchuk A. Yu., Babenko A. S., Yakimov Yu. E. 2019 – Physicochemical aspects of recycling tree leaf litter in the south of Western Siberia by the Eisenia fetida (Savigny) vermiculture – IOP Conf. Ser.: Earth Environ. Sci. 226: 012009.
- 41. Lavelle P., Decaёns T., Aubert M., Barot S., Blouin M., Bureau F., Margerie P., Mora P., Rossi J-P. 2006 – Soil invertebrates and ecosystem services – Eur. J. Soil. Biol. 42: 3-15.
- 42. Lavelle P., Spain A. V. 2001 – Soil ecology – Kluwer Academic Publishers, Dordrecht, 688 pp.
- 43. Lê S., Josse J., Husson F. 2008 – FactoMineR: An R Package for Multivariate Analysis – J. Stat. Softw. 25: 1-18.
- 44. Marschner P., Rengel Z. 2012 – Nutrient availability in soils (In: Marschner's Mineral Nutrition of Higher Plants (Third Edition) Ed: P. Marschner) – Academic Press, San Diego, pp. 315-330.
- 45. Naveed M., Herath L., Moldrup P., Arthur E., Nicolaisen M., Norgaard T., Ferre T. P. A., de Jonge L. W. 2016 – Spatial variability of microbial richness and diversity and relationships with soil organic carbon, texture and structure across an agricultural feld – Appl. Soil Ecol. 103: 44-55.
- 46. Nishiyama M., Sugita R., Otsuka S., Senoo K. 2012 – Community structure of bacteria on different types of mineral particles in a sandy soil – Soil Sci. Plant Nutr. 58: 562-567.
- 47. Orozco F. H., Cegarra J., Trujillo L. M., Roig A. 1996 – Vermicomposting of coffee pulp using the earthworm Eisenia fetida: effects on C and N contents and the availability of nutrients – Biol. Fert. Soils, 22: 162-166.
- 48. Pal S., Marschner P. 2016 – Influence of clay concentration, residue C/N and particle size on microbial activity and nutrient availability in clay-amended sandy soil – Soil Sci. Plant Nutr. 16: 350-361.
- 49. Perel T. S. 1979 – [Range and regularities in the distribution of earthworms of the USSR fauna] – Nauka, Moscow, 272 pp. (in Russian).
- 50. Ros M. B. H., Hiemstra T., van Groenigen J. W., Chareesri A., Koopmans G. F. 2017 – Exploring the pathways of earthworm-induced phosphorus availability – Geoderma, 303: 99-109.
- 51. Sapkota R., Santos S., Farias P., Krogh P. H., Winding A. 2020 – Insights into the earthworm gut mult-kingdom microbial communities – Sci. Total. Environ. 727: 138301.
- 52. Scharenbroch B. C., Johnston D. P. 2011 – A microcosm study of the com-mon night crawler earthworm (Lumbricus terrestris) and physical, chemical and biological properties of a designed urban soil – Urban Ecosyst. 14:119-134.
- 53. Schlatter D., Baugher C., Kendall K., Huggins D., Johnson-Maynard J., Paulitz T. 2019 – Bacterial communities of soil and earthworm casts of native Palouse Prairie remnants and no till wheat cropping systems – Soil Biol. Biochem. 139: 107625.
- 54. Seaton F. M., George P. B. L., Lebron I., Jones D. L., Creer S., Robinson D. A. 2020 – Soil textural heterogeneity impacts bacterial but not fungal diversity – Soil Biol. Biochem. 144: 107766.
- 55. Shekhovtsov S. V., Shipova A. A., Poluboyarova T. V., Vasiliev G. V., Golovanova E. V., Geraskina A. P., Bulakhova N. A., Szederjesi T., Peltek S. E. 2020 – Species Delimitation of the Eisenia nordenskioldi Complex (Oligochaeta, Lumbricidae) Using Transcriptomic Data – Front. Genet. 11: e01508.
- 56. Sofi J. A., Lone A. H., Ganie M. A., Dar N. A., Bhat S. A., Mukhtar M., Dar M. A., Ramzan S. 2016 – Soil microbiological activity and carbon dynamics in the current climate change scenarios: a review – Pedosphere, 26: 577-591.
- 57. Sun M., Chao H., Zheng X., Deng S., Ye M., Hu F. 2020 – Ecological role of earthworm intestinal bacteria in terrestrial environments: a review – Sci. Total Environ. 740 (12): 140008.
- 58. Tiunov A. V. 2007 – [Metabiosis in the soil system: influence of emerges on the structure and functioning of the soil biota] – Ph. D. thesis, A. N. Severtsov Institute of Ecology and Evolution, Moscow. http://www.sevin.ru/dissertations/ecology/10.pdf. (in Russian).
- 59. Umarov M. M., Striganova B. R., Kostin N. V. 2008 – Specific features of nitrogen transformation in the gut and coprolites of earthworms – Biol. Bull. Russ. Acad. Sci. 35: 643-652.
- 60. Van Groenigen J. W., Van Groenigen K. J., Koopmans G. F., Stokkermans L., Vos H. M. J., Lubbers I. M. 2019 – How fertile are earthworm casts? A meta analysis – Geoderma, 338: 525-535.
- 61. Versteegh E. A. A., Black S., Hodson M. E. 2014 – Environmental controls on the production of calcium carbonate by earthworms – Soil Biol. Biochem. 70: 159-161.
- 62. Vos H. M. J., Ros M. B. H., Koopmans G. F., van Groenigen J. W. 2014 – Do earthworms affect phosphorus availability to grass? A pot experiment – Soil Biol. Biochem. 79: 34-42.
- 63. Vos H. M. J., Koopmans G. F., Beezemer L., de Goede R. G. M., Hiemstra T., van Groenigen J. W. 2019 – Large variations in readily-available phosphorus in casts of eight earthworm species are linked to cast properties – Soil Biol. Biochem. 138: 107583.
- 64. Wall D. H., Bardgett R. D., Behan-Pelletier V., Herrick J. E., Jones T. H., Ritz K., Six J., Strong D. R., van der Putten W. H. 2012 – Soil ecology and ecosystem services – Oxford University Press, Oxford, 414 pp.
- 65. Wu J. L., Zhang C., Xiao L., Motelica Heino M., Ren Z. L., Deng T., Dai J. 2020 – Impacts of earthworm species on soil acidification, al speciation and base cation release in a subtropical soil from China – Environ. Sci. Poll. Res. 27: 33446-33457.
- 66. Xiao Z., Wang X., Koricheva J., Kergunteuil A., Le Bayon RC., Liu M., Hu F., Rasmann S. 2018 – Earthworms affect plant growth and resistance against herbivores: a meta-analysis – Funct. Ecol. 32: 150-160.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d489f22b-5c52-4dd5-b9e1-1ee106a82cdd