PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Comparison of Two-Roll and Three-Roll Cross Wedge Rolling Processes

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Cross wedge rolling (CWR) is used for producing stepped axles and shafts as well as die forging preforms. In current industrial practice, CWR conducted with two tools is predominantly used, with the wedges mounted on rolls or flat tool plates. However, CWR can also be performed with the use of three wedge rolls. This paper begins with a review of previous studies on CWR conducted with the use of three rolls. After that, numerical simulations of two- and three-roll CWR processes for the same shaft are described. Obtained numerical results are then used to compare the two processes in terms of material flow kinematics, material temperature, stresses and strains, failure modes, as well as load and energy parameters. Finally, the Conclusions section presents the advantages of three-roll cross wedge rolling, providing a good starting point for further research on this promising forming method.
Słowa kluczowe
EN
Twórcy
  • Lublin University of Technology, ul. Nadbystrzycka 36, 20-618 Lublin, Poland
Bibliografia
  • 1. Gronostajski Z., Pater Z., Madej L., Gontarz A., Lisiecki L., Łukaszek-Sołek A., et al. Recent development trends in metal forming. Archives of Civil and Mechanical Engineering. 2019; 19(3): 898-941.
  • 2. Pater Z. Cross-Wedge Rolling, Comprehensive Materials Processing; Button ST, Ed.; Elsevier Ltd., 2014; 3: 211–279.
  • 3. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Walczuk P. Assessment of ductile criteria with respect to their application in the modeling of cross wedge rolling. Journal of Materials Processing Technology. 2020; 278: e116501.
  • 4. Slick E.E. Manufacture of axles. US Patent no 470,354 (1892).
  • 5. Schneider F.R. Rolls for the manufacture of axles. US Patent no 679,998 (1901).
  • 6. Wurster A.L. Roll press. US Patent 1,493,836 (1924).
  • 7. Brown T.E. Rotary forging machine. US Patent no 2,342,917 (1944).
  • 8. Wilson H.M. Machine for deforming billets. US Patent no 2,686,442 (1954).
  • 9. Rogers S.E. The impact of drop forging research. Metal Forming. 1970; December: 356–361, 367.
  • 10. Thomas A. Transverse rolling of preforms for drop forging. Proc. 1st Int. Conf. on Rotary Metalworking Processes, 20–22 November, 1979, London, UK, 147–156.
  • 11. Danno A., Tanaka T. Characteristics of billet deformation in 3-roll wedge rolling of axisymmetric stepped shafts. In: Proc. 3rd Int. Conf. on Rotary Metalworking Processes; 8–10 September 1984; Kyoto, Japan, 321–332.
  • 12. Pater Z., Bartnicki J., Gontarz A., Weroński W.W. Numerical Modelling of Cross-Wedge Rolling of Hollowed Shafts. AIP Conference Proceedings. 2004; 712: 672–677.
  • 13. Bartnicki J., Pater Z. Numerical simulation of three-rolls cross wedge rolling of hollowed shaft. Journal of Materials Processing Technology. 2005; 164–165: 1154–1159.
  • 14. Pater Z. Finite element analysis of cross wedge rolling. Journal of Materials Processing Technology. 2006; 173: 201–208.
  • 15. Qiu P., Xiao H., Li M. Effect of Non-uniform Temperature Field on Piece Rolled by Three-roll Cross Wedge Rolling. Advanced Mechanics and Materials. 2009; 16–19: 456–461.
  • 16. Pater Z., Lis K., Walczuk-Gągała P. Numerical Analysis of the Cross-Wedge of a Hollow Rail Axle. Advances in Science and Technology Research Journal. 2020; 14(1): 145–153.
  • 17. Pater Z., Gontarz A., Weroński W. Cross-wedge rolling by means of one flat Wedge and two shaped Rolls. Journal of Materials Processing Technology. 2006; 177: 550–554.
  • 18. Tofil A., Tomczak J., Bulzak T., Pater Z., Buczaj M., Sumorek A. A Rotary Compression Process for Producing Hollow Gear Shafts. Materials 2020; 13: e5718.
  • 19. Tomczak J., Pater Z., Bulzak T. The influence of hollow billet thickness in rotary compression. The International Journal of Advanced Manufacturing Technology. 2016; 82: 1281–1291.
  • 20. Pater Z., Tomczak J., Bulzak T., Wójcik Ł. Conception of a Three Roll Cross Rolling Process of Hollow Rail Axles. ISIJ International. 2021; 61: 895–901.
  • 21. Pater Z., Wójcik Ł., Walczuk P. Comparative Analysis of Tube Piercing Processes in the Two-Roll and Three-Roll Mills. Advances in Science and Technology Research Journal. 2019; 13(1): 37–45.
  • 22. Skripalenko M.M., Romantsev B.A., Galkin S.P., Kaputkina L.M., Skripalenko M.N., Danilin A.V., et al. Forming Features at Screw Rolling of Austenic Stainless-Steel Billets. Journal of Materials Engineering and Performance. 2020; 29: 3889–3894.
  • 23. Yamane K., Shimoda K., Kuroda K., Kajikawa S., Kuboki T. A new ductile fracture criterion for skew rolling and its application to evaluate the effect of number rolls. Journal of Materials Processing Technology. 2021; 291: e116989.
  • 24. Pater Z., Tomczak J., Bulzak T., Wójcik Ł., Skripalenko M.M. Prediction of ductile fracture in skew rolling processes. International Journal of Machine Tools and Manufacture. 2021; 163: e103706.
  • 25. Pater Z., Tomczak J., Bulzak T. Numerical analysis of the skew rolling process for rail axles. Archives of Metallurgy and Materials. 2015; 60(1): 415–418.
  • 26. Xu C., Shu X.D. Influence of process parameters on the forming mechanics parameters of the three-roll skew rolling forming of the railway hollow shaft with 1:5. Metalurgija. 2018; 57(3): 153–156.
  • 27. Bartnicki J., Xia Y., Shu X. The chosen aspects of skew rolling of hollow stepped shafts. Materials. 2021; 14: e764.
  • 28. Cao Q., Hua L., Qian D. Finite element analysis of deformation characteristics in cold helical roll-ing of bearing steel-balls. Journal of Central South University. 2015; 22: 1175–1183.
  • 29. Lis K., Wójcik Ł., Pater Z. Numerical analysis of a skew rolling process for producing a crankshaft preform. Open Engineering. 2016; 6: 581–4.
  • 30. Huang H., Chen X., Fan B., Jin Y., Shu X. Initial billet temperature influence and location investigation on tool wear in cross wedge rolling. The International Journal of Advanced Manufacturing Technology. 2015; 79: 1545–56.
  • 31. Tofil A., Tomczak J., Bulzak T. Numerical and experimental study on producing aluminum alloy 6061 shafts by cross wedge rolling using a universal rolling mill. Archives of Metallurgy and Materials. 2015; 60(2): 801–807.
  • 32. Lu L., Wang Z., Wang F., Zhu G., Zhang X. Simulation of tube forming process in Mannesmann mill. Journal of Shanghai Jiaotong University (Science). 2011; 16(3): 281–285.
  • 33. Li Z., Shu X. Involute Curve Roller Trace Design and Optimization in Multipass Conventional Spinning Based on the Forming Clearance Compensation. ASME Journal of Manufacturing Science and Engineering. 2019; 141(9): e091007.
  • 34. Berti G.A., Quagliato L., Monti M. Set-up of radial–axial ring-rolling process: Process worksheet and ring geometry expansion prediction. International Journal of Mechanical Sciences. 2015; 99: 58–71.
  • 35. Quagliato L., Berti G.A. Mathematical definition of the 3D strain field of the ring in the radial-axial ring rolling process. International Journal of Mechanical Sciences. 2016; 115–116: 746–759.
  • 36. Groche P., Kramer P. Numerical investigation of the influence of frictional conditions in thread rolling operations with flat dies. International Journal of Material Forming. 2018; 11: 687–703.
  • 37. Bai Y., Teng X., Wierzbicki T. On the application of stress triaxiality formula for plane strain fracture testing. Journal of Engineering Materials and Technology, Transactions of the ASME. 2009; 131(2): e021002.
  • 38. Bulzak T., Pater Z., Tomczak J., Wójcik Ł., Murillo-Marrodán A. Internal crack formation in cross wedge rolling: Fundamentals and rolling methods. Journal of Materials Processing Technology. 2022; 307: e117681.
  • 39. Pater Z., Tomczak J., Bulzak T., Bartnicki J., Tofil A. Prediction of Crack Formation for Cross Wedge Rolling of Harrow Tooth Preform. Materials. 2019; 12: e2287.
  • 40. Cockcroft M.G., Latham D.J. Ductility and the workability of metals. Journal of the Institute of Metals. 1968; 96: 33–39.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d48833a9-32f7-46ef-8607-d93516a5f296
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.