PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Novel hybrid approaches based on evolutionary strategy for streamfow forecasting in the Chellif River, Algeria

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this study, the feedforward neural networks (FFNNs) were proposed to forecast the multi-day-ahead streamfow. The parameters of FFNNs model were optimized utilizing genetic algorithm (GA). Moreover, discrete wavelet transform was utilized to enhance the accuracy of FFNNs model’s forecasting. Therefore, the wavelet-based feedforward neural networks (WFFNNs-GA) model was developed for the multi-day-ahead streamfow forecasting based on three evolutionary strategies [i.e., multi-input multi-output (MIMO), multi-input single-output (MISO), and multi-input several multi-output (MISMO)]. In addition, the developed models were evaluated utilizing fve diferent statistical indices including root mean squared error, signal-to-noise ratio, correlation coefcient, Nash–Sutclife efciency, and peak fow criteria. Results provided that the statistical values of WFFNNs-GA model based on MISMO evolutionary strategy were superior to those of WFFNNs-GA model based on MISO and MIMO evolutionary strategies for the multi-day-ahead streamfow forecasting. Results indicated that the performance of WFFNNs-GA model based on MISMO evolutionary strategy provided the best accuracy. Results also explained that the hybrid model suggested better performance compared with stand-alone model based on the corresponding evolutionary strategies. Therefore, the hybrid model can be an efcient and robust implement to forecast the multi-day-ahead streamfow in the Chellif River, Algeria.
Czasopismo
Rocznik
Strony
167--180
Opis fizyczny
Bibliogr. 71 poz.
Twórcy
  • URMER Laboratory, Department of Hydraulic, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria
  • URMER Laboratory, Department of Hydraulic, Faculty of Technology, University of Tlemcen, Tlemcen, Algeria
  • Research Laboratory of Water Resources, Soil and Environment, Department of Civil Engineering, Faculty of Architecture and Civil Engineering, Amar Telidji University, Laghouat, Algeria
autor
  • Department of Railroad Construction and Safety Engineering, Dongyang University, Yeongju 36040, South Korea
Bibliografia
  • 1. Abdollahi S, Raeisi J, Khalilianpour M, Ahmadi F, Kisi O (2017) Daily mean streamflow prediction in perennial and non-perennial rivers using four data driven techniques. Water Resour Manage 31(15):4855–4874. https://doi.org/10.1007/s11269-017-1782-7
  • 2. Adamowski J, Sun K (2010) Development of a coupled wavelet transform and neural network method for flow forecasting of non-perennial rivers in semi-arid watersheds. J Hydrol 390(1–2):85–91. https://doi.org/10.1016/j.jhydrol.2010.06.033
  • 3. Asadi S, Shahrabi J, Abbaszadeh P, Tabanmehr S (2013) A new hybrid artificial neural networks for rainfall–runoff process modeling. Neurocomputing 121:470–480. https://doi.org/10.1016/j.neucom.2013.05.023
  • 4. Badrzadeh H, Sarukkalige R, Jayawardena AW (2013) Impact of multi-resolution analysis of artificial intelligence models inputs on multi-step ahead river flow forecasting. J Hydrol 507:75–85. https://doi.org/10.1016/j.jhydrol.2013.10.017
  • 5. Baydaroğlu Ö, Koçak K, Duran K (2018) River flow prediction using hybrid models of support vector regression with the wavelet transform, singular spectrum analysis and chaotic approach. Meteorol Atmos Phys 130(3):349–359. https://doi.org/10.1007/s00703-017-0518-9
  • 6. Ben Taieb S, Sorjamaa A, Bontempi G (2010) Multiple-output modeling for multi-step-ahead time series forecasting. Neurocomputing 73(10–12):1950–1957. https://doi.org/10.1016/j.neucom.2009.11.030
  • 7. Benedetto F, Giunta G, Mastroeni L (2015) A maximum entropy method to assess the predictability of financial and commodity prices. Digit Signal Proc 46:19–31. https://doi.org/10.1016/j.dsp.2015.08.001
  • 8. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford, pp 116–160
  • 9. Bormann H (2005) Evaluation of hydrological models for scenario analyses: signal-to-noise-ratio between scenario effects and model uncertainty. Adv Geosci 5:43–48
  • 10. Bouchelkia H, Belarbi F, Remini B (2014) Quantification of suspended sediment load by double correlation in the watershed of Chellif (Algeria). J Water Land Dev 21:39–46. https://doi.org/10.2478/jwld-2014-0012
  • 11. Chang FJ, Chiang YM, Chang LC (2007) Multi-step-ahead neural networks for flood forecasting. Hydrol Sci J 52(1):114–130. https://doi.org/10.1623/hysj.52.1.114
  • 12. Chu H, Wei J, Li T, Jia K (2016) Application of support vector regression for mid- and long-term runoff forecasting in “Yellow river headwater” region. Proc Eng 154:1251–1257. https://doi.org/10.1016/j.proeng.2016.07.452
  • 13. Danandeh Mehr A, Kahya E, Olyaie E (2013) Streamflow prediction using linear genetic programming in comparison with a neuro-wavelet technique. J Hydrol 505:240–249. https://doi.org/10.1016/j.jhydrol.2013.10.003
  • 14. Dariane AB, Azimi S (2016) Forecasting streamflow by combination of a genetic input selection algorithm and wavelet transforms using ANFIS models. Hydrol Sci J 61(3):585–600. https://doi.org/10.1080/02626667.2014.988155
  • 15. Delafrouz H, Ghaheri A, Ghorbani MA (2018) A novel hybrid neural network based on phase space reconstruction technique for daily river flow prediction. Soft Comput 22(7):2205–2215. https://doi.org/10.1007/s00500-016-2480-8
  • 16. Deo RC, Tiwari MK, Adamowski JF, Quilty JM (2017) Forecasting effective drought index using a wavelet extreme learning machine (W-ELM) model. Stoch Env Res Risk Assess 31(5):1211–1240. https://doi.org/10.1007/s00477-016-1265-z
  • 17. Ding S, Li H, Su C, Yu J, Jin F (2013) Evolutionary artificial neural networks: a review. Artif Intell Rev 39(3):251–260. https://doi.org/10.1007/s10462-011-9270-6
  • 18. Evrendilek F (2014) Assessing neural networks with wavelet denoising and regression models in predicting diel dynamics of eddy covariance-measured latent and sensible heat fluxes and evapotranspiration. Neural Comput Appl 24(2):327–337. https://doi.org/10.1007/s00521-012-1240-7
  • 19. Ghaemi A, Rezaie-Balf M, Adamowski J, Kisi O, Quilty J (2019) On the applicability of maximum overlap discrete wavelet transform integrated with MARS and M5 model tree for monthly pan evaporation prediction. Agric Meteorol 278:107647. https://doi.org/10.1016/j.agrformet.2019.107647
  • 20. Ghorbani MA, Khatibi R, Mehr AD, Asadi H (2018) Chaos-based multigene genetic programming: a new hybrid strategy for river flow forecasting. J Hydrol 562:455–467. https://doi.org/10.1016/j.jhydrol.2018.04.054
  • 21. Goldberg DE, Deb K (1991) A comparative analysis of selection schemes used in genetic algorithms. Found Genet Algorithms 1:69–93. https://doi.org/10.1016/B978-0-08-050684-5.50008-2
  • 22. Goldberg DE, Holland JH (1988) Genetic algorithms and machine learning. Mach Learn 3(2–3):95–99. https://doi.org/10.1023/A:1022602019183
  • 23. Gowda CC, Mayya SG (2014) Comparison of back propagation neural network and genetic algorithm neural network for stream flow prediction. J Comput Environ Sci 2014:290127. https://doi.org/10.1155/2014/290127
  • 24. Guo J, Zhou J, Qin H, Zou Q, Li Q (2011) Monthly streamflow forecasting based on improved support vector machine model. Expert Syst Appl 38(10):13073–13081. https://doi.org/10.1016/j.eswa.2011.04.114
  • 25. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice-Hall, Upper Saddle River, pp 178–274
  • 26. Holland JH (1992) Genetic algorithms. Sci Am 267(1):66–73
  • 27. Hu T, Wu F, Zhang X (2007) Rainfall–runoff modeling using principal component analysis and neural network. Hydrol Res 38(3):235–248. https://doi.org/10.2166/nh.2007.010
  • 28. Jain A, Srinivasulu S (2004) Development of effective and efficient rainfall-runoff models using integration of deterministic, real-coded genetic algorithms and artificial neural network techniques. Water Resour Res 40(4):W04302. https://doi.org/10.1029/2003WR002355
  • 29. Jajarmizadeh M, Sidek LM, Mirzai M, Alaghmand S, Harun S, Majid MR (2016) Prediction of surface flow by forcing of climate forecast system reanalysis data. Water Resour Manage 30(8):2627–2640. https://doi.org/10.1007/s11269-016-1303-0
  • 30. Kalteh AM (2015) Wavelet genetic algorithm-support vector regression (wavelet GA-SVR) for monthly flow forecasting. Water Resour Manage 29(4):1283–1293. https://doi.org/10.1007/s11269-014-0873-y
  • 31. Karimi S, Shiri J, Kisi O, Xu T (2018) Forecasting daily streamflow values: assessing heuristic models. Hydrol Res 49(3):658–669. https://doi.org/10.2166/nh.2017.111
  • 32. Kim S, Kim HS (2008) Neural networks and genetic algorithm approach for nonlinear evaporation and evapotranspiration modeling. J Hydrol 351(3–4):299–317. https://doi.org/10.1016/j.jhydrol.2007.12.014
  • 33. Kisi O, Shiri J (2012) Reply to discussion of “Precipitation forecasting using wavelet-genetic programming and wavelet-neuro-fuzzy conjunction models”. Water Resour Manage 26(12):3663–3665. https://doi.org/10.1007/s11269-012-0060-y
  • 34. Kisi O, Latifoğlu L, Latifoğlu F (2014) Investigation of empirical mode decomposition in forecasting of hydrological time series. Water Resour Manage 28(12):4045–4057. https://doi.org/10.1007/s11269-014-0726-8
  • 35. Kline DM (2004) Methods for multi-step time series forecasting with neural networks. In: Neural networks in business forecasting, IGI Global, pp 226–250. https://doi.org/10.4018/978-1-59140-176-6.ch012
  • 36. Krishna B, Satyaji Rao YR, Nayak PC (2011) Time series modeling of river flow using wavelet neural networks. J Water Resour Prot 3:50–59. https://doi.org/10.4236/jwarp.2011.31006
  • 37. Legates DR, McCabe GJ (1999) Evaluating the use of “goodness-of-fit” measures in hydrologic and hydroclimatic model validation. Water Resour Res 35(1):233–241. https://doi.org/10.1029/1998WR900018
  • 38. Malika A, Abderrahman H, Aicha L, Laounia N, Habib M (2018) Use of high spatial resolution satellite data for monitoring and characterization of drought conditions in the northwestern Algeria. Min Sci 25:85–113. https://doi.org/10.5277/msc182507
  • 39. Mallat SG (1989) A theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans Pattern Anal Mach Intell 11(7):674–693. https://doi.org/10.1109/34.192463
  • 40. Nash JE, Sutcliffe JV (1970) River flow forecasting through conceptual models I: a discussion of principles. J Hydrol 10:282–290
  • 41. Nason GP (2008) Wavelet methods in statistics with R. Springer Science and Business Media, New York, pp 15–78. https://doi.org/10.1007/978-0-387-75961-6
  • 42. Nourani V, Alami MT, Aminfar MH (2009) A combined neural-wavelet model for prediction of Ligvanchai watershed precipitation. Eng Appl Artif Intell 22(3):466–472. https://doi.org/10.1016/j.engappai.2008.09.003
  • 43. Nourani V, Hosseini BA, Adamowski J, Gebremicheal M (2013) Using self-organizing maps and wavelet transforms for space-time pre-processing of satellite precipitation and runoff data in neural network based rainfall–runoff modeling. J Hydrol 476:228–243. https://doi.org/10.1016/j.jhydrol.2012.10.054
  • 44. Nourani V, Baghanam AH, Adamowski J, Kisi O (2014) Applications of hybrid wavelet–artificial intelligence models in hydrology: a review. J Hydrol 514:358–377. https://doi.org/10.1016/j.jhydrol.2014.03.057
  • 45. Parmar KS, Bhardwaj R (2015) River water prediction modeling using neural networks, fuzzy and wavelet coupled model. Water Resour Manage 29(1):17–33. https://doi.org/10.1007/s11269-014-0824-7
  • 46. Quilty J, Adamowski J (2018) Addressing the incorrect usage of wavelet-based hydrological and water resources forecasting models for real-world applications with best practices and a new forecasting framework. J Hydrol 563:336–353. https://doi.org/10.1016/j.jhydrol.2018.05.003
  • 47. Ravansalar M, Rajaee T, Zounemat-Kermani M (2016) A wavelet–linear genetic programming model for sodium (Na+) concentration forecasting in rivers. J Hydrol 537:398–407. https://doi.org/10.1016/j.jhydrol.2016.03.062
  • 48. Ravansalar M, Rajaee T, Kisi O (2017) Wavelet-linear genetic programming: a new approach for modeling monthly streamflow. J Hydrol 549:461–475. https://doi.org/10.1016/j.jhydrol.2017.04.018
  • 49. Ravikumar P, Somashekar RK (2017) Principal component analysis and hydrochemical facies characterization to evaluate groundwater quality in Varahi river basin, Karnataka state, India. Appl Water Sci 7(2):745–755. https://doi.org/10.1007/s13201-015-0287-x
  • 50. Rezaie-Balf M, Kisi O (2017) New formulation for forecasting streamflow: evolutionary polynomial regression versus extreme learning machine. Hydrol Res 49(3):939–953. https://doi.org/10.2166/nh.2017.283
  • 51. Rezaie-Balf M, Zahmatkesh Z, Kim S (2017) Soft computing techniques for rainfall-runoff simulation: local non–parametric paradigm versus model classification methods. Water Resour Manage 31(12):3843–3865. https://doi.org/10.1007/s11269-017-1711-9
  • 52. Rezaie-Balf M, Kim S, Fallah H, Alaghmand S (2019) Daily river flow forecasting using ensemble empirical mode decomposition based heuristic regression models: application on the perennial rivers in Iran and South Korea. J Hydrol 572:470–485. https://doi.org/10.1016/j.jhydrol.2019.03.046
  • 53. Sahay RR, Srivastava A (2014) Predicting monsoon floods in rivers embedding wavelet transform, genetic algorithm and neural network. Water Resour Manage 28(2):301–317. https://doi.org/10.1007/s11269-013-0446-5
  • 54. Samsudin R, Saad P, Shabri A (2011) River flow time series using least squares support vector machines. Hydrol Earth Syst Sci 15:1835–1852. https://doi.org/10.5194/hess-15-1835-2011
  • 55. Sang YF, Wang Z, Liu C (2013) Discrete wavelet-based trend identification in hydrologic time series. Hydrol Process 27(14):2021–2031. https://doi.org/10.1002/hyp.9356
  • 56. Santos CAG, Freire PKMM, Silva GBL, Silva RM (2014) Discrete wavelet transform coupled with ANN for daily discharge forecasting into Três Marias reservoir. In: Proceedings of the international association of hydrological sciences, Bologna, Italy, pp 100–105. https://doi.org/10.5194/piahs-364-100-2014
  • 57. Seo Y, Kim S (2016) River stage forecasting using wavelet packet decomposition and data-driven Models. Proc Eng 154:1225–1230. https://doi.org/10.1016/j.proeng.2016.07.439
  • 58. Seo Y, Kim S, Kisi O, Singh VP (2015) Daily water level forecasting using wavelet decomposition and artificial intelligence techniques. J Hydrol 520:224–243. https://doi.org/10.1016/j.jhydrol.2014.11.050
  • 59. Seo Y, Kim S, Singh V (2018) Machine learning models coupled with variational mode decomposition: a new approach for modeling daily rainfall-runoff. Atmosphere 9(7):251. https://doi.org/10.3390/atmos9070251
  • 60. Shafaei M, Kisi O (2016) Lake level forecasting using wavelet-SVR, wavelet-ANFIS and wavelet-ARMA conjunction models. Water Resour Manage 30(1):79–97. https://doi.org/10.1007/s11269-015-1147-z
  • 61. Shoaib M, Shamseldin AY, Melville BW, Khan MM (2015) Runoff forecasting using hybrid wavelet gene expression programming (WGEP) approach. J Hydrol 527:326–344. https://doi.org/10.1016/j.jhydrol.2015.04.072
  • 62. Tayyab M, Zhou J, Dong X, Ahmad I, Sun N (2019) Rainfall-runoff modeling at Jinsha River basin by integrated neural network with discrete wavelet transform. Meteorol Atmos Phys 131(1):115–125. https://doi.org/10.1007/s00703-017-0546-5
  • 63. Tiwari MK, Chatterjee C (2010) Development of an accurate and reliable hourly flood forecasting model using wavelet–bootstrap–ANN (WBANN) hybrid approach. J Hydrol 394(3–4):458–470. https://doi.org/10.1016/j.jhydrol.2010.10.001
  • 64. Uysal G, Şorman AÜ (2017) Monthly streamflow estimation using wavelet-artificial neural network model: a case study on Çamlıdere dam basin, Turkey. Proc Comput Sci 120:237–244. https://doi.org/10.1016/j.procs.2017.11.234
  • 65. Wang WC, Chau KW, Cheng CT, Qiu L (2009) A comparison of performance of several artificial intelligence methods for forecasting monthly discharge time series. J Hydrol 374(3–4):294–306. https://doi.org/10.1016/j.jhydrol.2009.06.019
  • 66. Willmott CJ (1984) On the evaluation of model performance in physical geography. Spatial statistics and models. Springer, Dordrecht, pp 443–460
  • 67. Wu Z, Huang NE (2009) Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1(1):1–41. https://doi.org/10.1142/S1793536909000047
  • 68. Yu H, Wen X, Feng Q, Deo RC, Si J, Wu M (2018) Comparative study of hybrid-wavelet artificial intelligence models for monthly groundwater depth forecasting in extreme arid regions, Northwest China. Water Resour Manage 32(1):301–323. https://doi.org/10.1007/s11269-017-1811-6
  • 69. Yuan X, Tan Q, Lei X, Yuan Y, Wu X (2017) Wind power prediction using hybrid autoregressive fractionally integrated moving average and least square support vector machine. Energy 129:122–137. https://doi.org/10.1016/j.energy.2017.04.094
  • 70. Zakhrouf M, Bouchelkia H, Stamboul M (2016) Neuro-wavelet (WNN) and neuro-fuzzy (ANFIS) systems for modeling hydrological time series in arid areas. A case study: the catchment of Aın Hadjadj (Algeria). Desalin Water Treat 57(37):17182–18194. https://doi.org/10.1080/19443994.2015.1085908
  • 71. Zakhrouf M, Bouchelkia H, Stamboul M, Kim S, Heddam S (2018) Time series forecasting of river flow using an integrated approach of wavelet multi-resolution analysis and evolutionary data-driven models. A case study: sebaou River (Algeria). Phys Geogr 39(6):506–522. https://doi.org/10.1080/02723646.2018.1429245
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d487132e-3e40-44ba-9e45-cd885e0af477
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.