PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Tribological Properties and Surface Roughness of Printed Ti-6Al-4v/PE-UHMW Friction Pair Elements

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Właściwości tribologiczne i chropowatość powierzchni elementów pary ciernej drukowany Ti-6Al-4v/PE-UHMW
Języki publikacji
EN
Abstrakty
EN
The article presents tribological research on the cooperation of a kinematic pair composed of metallic and polymer biomaterials. In the sample tests, a material widely used in orthopaedics and dentistry was used (the medical titanium alloy Ti-6Al-4V obtained both by traditional manufacturing methods, i.e. casting, and the additive manufacturing method SLM/DLMS (3D printing)) and a counter sample (high-density polyethylene PE-UHMW). The friction pair selected in this way was subjected to tribological tests on a PT-3 tribometer under specific operating conditions. After the tribological tests, the change in tribological parameters, i.e. the coefficient of friction or abrasive wear on the surfaces of the tested biomaterials, was evaluated. The obtained results also enabled the assessment of the changes occurring in the geometric structure of the surface of the Ti-6Al-4V/ PE-UHMW friction pair for titanium samples obtained via drawn rod and 3D printing.
PL
W artykule przedstawiono badania tribologiczne dotyczące współpracy pary kinematycznej złożonej z biomateriałów metalicznych i polimerowych. W badaniach na próbki zastosowano materiał szeroko stosowany w ortopedii i stomatologii – medyczny stop tytanu Ti-6Al-4V otrzymany tradycyjną metodą wytwarzania, tj. odlewaniem oraz addytywną metodą wytwarzania SLM/DLMS (druku 3D), zaś na przeciwpróbkę – polietylen o wysokiej gęstości PE-UHMW. Tak dobraną parę cierną poddano badaniom tribologicznym na tribometrze PT-3 w określonych warunkach eksploatacyjnych. Po przeprowadzonych badaniach tribologicznych ocenie poddano zmianę parametrów tribologicznych, tj. współczynnik tarcia czy zużycia ściernego na powierzchniach badanych biomateriałów. Otrzymane wyniki pozwoliły również na ocenę zmian zachodzących w strukturze geometrycznej powierzchni pary ciernej Ti-6Al-4V/PE-UHMW dla próbek tytanowych otrzymanych w postaci pręta litego oraz druku 3D.
Czasopismo
Rocznik
Tom
Strony
29--36
Opis fizyczny
Bbibliogr., 28 poz., fot., tab., wykr.
Twórcy
  • Kazimierz Wielki University, Faculty of Mechatronics, 1 Kopernika St., 85-074 Bydgoszcz, Poland
  • Gdańsk University of Technology, Faculty of Mechanical Engineering and Ship Technology, 11/12 Narutowicza St., 80-233 Gdańsk, Poland
autor
  • University of Bydgoszcz, 4C Unii Lubelskiej Square, 85-059 Bydgoszcz, Poland
  • bogdan.ligaj.1974@gmail.com
  • Bydgoszcz University of Science and Technology, Faculty of Mechanical Engineering, 7 prof. S. Kaliskiego Ave., 85-796 Bydgoszcz, Poland
  • Khmelnytskyi National University, Faculty of Engineering, Transport and Architecture, 11 Instytutska St., Khmelnytsky, 29016 Ukraine
Bibliografia
  • 1. Błażewicz S., Marciniak J. (eds.): Biomateriały. Warszawa: Akademicka Oficyna Wydawnicza Exit, 2016.
  • 2. Będziński R. (eds.): Biomechanics. Drukarnia Naukowa PAN, 2011.
  • 3. Łępicka M., Grądzka-Dahlke M.: Surface Modification of Ti-6Al-4V Titanium Alloy for Biomedical Applications and its Effect on Tribological Performance – a Review. Rev. Adv. Mater. Sci. 46, 2016, pp. 86–103, https://www.ipme.ru/ejournals/RAMS/no_14616/07_14616_lepicka.pdf.
  • 4. Gierzyńska-Dolna M., Lijewski M., Mróz A.: Tribological aspects of material selection for intevertebral disc implant. Tribologia 3/2014, pp. 59–68, https://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-15aaf71c-1148-4d37-84e7-5118235c85ca?q = bwmeta1.element.baztech-9c14bd14-be43-48dd-b6af-9e43633a8b11;5&qt = CHILDREN-STATELESS.
  • 5. Rodrigues D. C., Valderrama P., Wilson T. G., Palmer K., Thomas A., Sridhar S. et al.: Titanium corrosion mechanisms in the oral environment: A retrieval study. Materials (Basel) 2013/6, pp. 5258–5274, https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5452779/.
  • 6. Wolner C., Nauer G. E., Trummer J., Putz V., Tschegg S.: Possible reasons for the unexpected bad biocompatibility of metal-on-metal hip implants. Mater Sci Eng C 2006/26, pp. 34–40, https://doi.org/10.1016/j.msec.2005.05.004.
  • 7. Dobrowolska A.: Influence of the unit pressure on the static friction coefficient of particular biomaterials. Current Problems of Biomechanics 2012, pp. 27–30, http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-41dc125e-5bd8-4a82-b327-5ce27453d1b3.
  • 8. Cvijovic´-Alagic´ I., Cvijovic´ Z., Mitrovic´ S., Panic´ V., Rakin M.: Wear and corrosion behaviour of Ti-13Nb-13Zr and Ti-6Al-4V alloys in simulated physiological solution. Corrosion Science 53, 2011, pp. 796–808, https://doi.org/10.1016/j.corsci.2010.11.014.
  • 9. Traini T., Mangano C., Sammons RL., Mangano F., Macchi A., Piattelli A.: Direct laser metal sintering as a new approach to fabrication of an isoelastic functionally graded material for manufacture of porous titanium dental implants. Dent Mater 2008/24, pp. 1525–1533, https://doi.org/10.1016/j.dental.2008.03.029.
  • 10. Kaya M. Ş., Ece R. E., Keles O., Qader O.,Yilbas B. S.: Effect of Post Processes on Mechanical Properties of 3D Printed Ti-6Al-4V Gears. J. of Materi Eng and Perform, 2022, https://doi.org/10.1007/s11665-022-06706-7.
  • 11. Keles O., Qadeer A., Yilbas B. S.: Wetting state of 3D printed Ti-6Al-4V alloy surface, Advances in Materials and Processing Technologies, 2021, https://doi.org/10.1080/2374068X.2021.1912539.
  • 12. Dumas M., Terriault P., Brailovski V.: Modelling and characterization of a porosity graded lattice structure for additively manufactured biomaterials. Materials & Design vol. 121, pp. 383–392, https://doi.org/10.1016/j.matdes.2017.02.021.
  • 13. Liao B., Xia R. F., Li W., Lu D., Jin Z.M.: 3D-Printed Ti-6Al-4V scaffolds with graded triply periodic minimal surface structure for bone tissue engineering. J Mater Eng Perform, 30 (2021), pp. 4993–5004, https://doi.org/10.1007/s11665-021-05580-z.
  • 14. Bing Ren, Yi Wan, Chao Liu, Hongwei Wang, Mingzhi Yu, Xiao Zhang, Yong Huang: Improved osseointegration of 3D printed Ti-6Al-4V implant with a hierarchical micro/nano surface topography: An in vitro and in vivo study. Materials Science and Engineering Volume 118, 2021, https://doi.org/10.1016/j.msec.2020.111505.
  • 15. Sathish S., Geetha M., Pandey N. D., Richard C., Asokamani R.: Studies on the corrosion and wear behavior of the laser nitrided biomedical titanium and its alloys. Mater Sci Eng C 2010/30, pp. 376–382, https://doi.org/10.1016/j.msec.2009.12.004.
  • 16. Balla V. K., Soderlind J., Bose S., Bandyopadhyay A.: Microstructure, mechanical and wear properties of laser surface melted Ti-6Al-4V alloy. J Mech Behav Biomed Mater 2014/32, p. 335–44, https://doi.org/10.1016/j.jmbbm.2013.12.001.
  • 17. Zasińska K., Seramak T., Łubiński J.: Comparison of the abrasion resistance of the selected biomaterials for friction components in orthopedic endoprostheses. Tribologia 6/2015, pp. 187–198.http://yadda.icm.edu.pl/baztech/element/bwmeta1.element.baztech-eaacdc49-1d48-4f0f-a190-7ae278b189ee.
  • 19. Gierzyńska-Dolna M., Lijewski M. Mróz A., Brytsko A. A., Anosov V. S.: Tribological examination of lumbar intervertebral disc implants. Journal of Friction and Wear, vol. 34, pp. 253–261, 2013, https://doi.org/10.3103/S1068366613040041.
  • 20. Gang S., Fengzhou F., Chengwei K.: Tribological Performance of Bioimplants: A Comprehensive Review. Nanotechnology and Precision Engineering Volume 1, Issue 2, 2018, pp. 107–122, https://doi.org/10.13494/j.npe.20180003.
  • 21. Kaveh M. et al.: A review on biomedical implant materials and the effect of friction stir based techniques on their mechanical and tribological properties. Journal of Materials Research and Technology Volume 17, 2022, pp. 1054–1121, https://doi.org/10.1016/j.jmrt.2022.01.050.
  • 22. Oralu A.: Investigation of Wear Properties of EBM Processed Ti-6Al-4V with UHMWPE for Biomedical Applications. Applied Mechanics and Materials, vol. 811, 2015, pp. 14–18, https://doi.org/10.4028/www.scientific.net/AMM.811.14.
  • 23. Borisova R. V., Nikiforov L. A., Spiridonov A. M. et al.: The Influence of Brominated UHMWPE on the Tribological Characteristics and Wear of Polymeric Nanocomposites Based on UHMWPE and Nanoparticles. J. Frict. Wear 40, 2019, pp. 27–32, https://doi.org/10.3103/S1068366619010045.
  • 24. Wang Y., Yin Z., Li H., Gao G., Zhang X.: Friction and wear characteristics of ultrahigh molecular weight polyethylene (UHMWPE) composites containing glass fibers and carbon fibers under dry and waterlubricated conditions. Wear vol. 380–381, 2017, pp. 42–51, https://doi.org/10.1016/j.wear.2017.03.006.
  • 25. Leksycki K., Feldshtein E., Maruda W., Khanna N., Królczyk G., Pruncu C.: An insight into the effect surface morphology, processing, and lubricating conditions on tribological properties of Ti-6Al-4V and UHMWPE pairs. Tribology International 170, 2022, https://doi.org/10.1016/j.triboint.2022.107504.
  • 26. Feldshtein E. E., Vitjaz P. A. Leksycki K.: Tribotechnical Characteristics of Ti-6Al-4V Titanium Alloy–Ultra-High-Molecular-Weight Polyethylene Friction Pairs. J. Frict. Wear 41, 399–404, 2020, https://doi.org/10.3103/S1068366620050098.
  • 27. Lawrowski Z.: Tribology. Friction, wear and lubrication. Oficyna Wydawnicza Politechniki Wrocławskiej, Wrocław 2008, https://w.bibliotece.pl/50934/Tribologia.
  • 28. Musiał J.: The Importance of Surface Topography in the Transformation of the Cylindrical Surface Layer of the Rolling Pairs; Publishing House of University of Technology and Life Sciences: Bydgoszcz, Poland, 2014.
  • 29. Niemczewska-Wójcik M.: The influence of the surface geometric structure on the functionality of implants. Wear vol. 271, issues 3–4, 2011, pp. 596–603, https://doi.org/10.1016/j.wear.2010.06.013.
Uwagi
Błąd w liczbowaniu bibliografii od poz.17. W oryginale rozdzielono jedną pozycję na dwie części.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4865e13-3a74-4f2d-8fc1-35db7e2b145d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.