PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Design and optimization of a radial-axial hybrid excited machine with spoke-type permanent magnet rotor

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
To further enhance the speed regulation range of the hybrid excited machine (HEM), the structure of a magnetic ring is optimized using a combination of the magnetic circuit method (MCM) and numerical analysis method in this paper, and a disc magnetic ring (DMR) is proposed. The magnetic density distribution of the proposed disc magnetic ring hybrid excited machine (DMRHEM) is compared to the radial-axial hybrid excited machine (RAHEM), and the superiority of alleviating a saturation problem in the proposed DMRHEM is determined. To improve the power density, the spoke-type permanent magnet (PM) rotor is applied. The influence of the proposed DMR on the HEM is analyzed, and the field adjustment capability of the proposed DMRHEM is better. Based on this, by combining the bypass principle, the analytical expressions for the relations between the rotor pole-pair number and the motor axial length/stator inner diameter (MAL/SID) as well as flux regulation capability are derived to further explore the superiority of the proposed DMRHEM. The influence mechanism of the rotor pole-pair number and the MAL/SID on the proposed DRMHEM is determined. The optimal MAL/SID and pole-pair number are obtained.
Rocznik
Strony
409--432
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr., wz.
Twórcy
autor
  • Zhengzhou University of Light Industry, China
autor
  • Zhengzhou University of Light Industry, China
  • Zhengzhou University of Light Industry, China
Bibliografia
  • [1] Qiu H., Zhang Y., Yang C., Yi R., Performance analysis and comparison of PMSM with concentrated winding and distributed winding, Archives of Electrical Engineering, vol. 2, no. 69, pp. 303–317 (2020), DOI: 10.24425/aee.2020.133027.
  • [2] Capponi F., Borocci G., Donato G., Caricchi F., Flux regulation strategies for hybrid excitation synchronous machines, IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3838–3847 (2015), DOI: 10.1109/TIA.2015.2417120.
  • [3] Liu X., Li Y., Liu Z., Ling T., Luo Z., Optimized design of a high-power-density PM-assisted synchronous reluctance machine with ferrite magnets for electric vehicles, Archives of Electrical Engineering, vol. 66, no. 2, pp. 279–292 (2017), DOI: 10.1515/aee-2017-0021.
  • [4] Amara Y., Vido L., Gabsi M., Hoang E., Ahmed A.H.B., Lecrivain M., Hybrid excitation synchronous machines: Energy-efficient solution for vehicles propulsion, IEEE Trans Veh. Technol., vol. 58, no. 5, pp. 2137–2149 (2008), DOI: 10.1109/VPPC.2006.364367.
  • [5] Hao H., Ziqiang Z., Wei H., Investigation of partitioned stator hybrid excited switched flux machines with different rotor piece numbers, Proceedings of the CSEE, vol. 41, no. 16, pp. 5715–5727 (2019).
  • [6] Capponi F., Borocci G., Donato G., Caricchi F., Flux regulation strategies for hybrid excitation synchronous machines, IEEE Trans. Ind. Appl., vol. 51, no. 5, pp. 3838–3847 (2015), DOI: 10.1109/TIA.2015.2417120.
  • [7] Wu Z., Fan Y., Chen H., Wang X., Electromagnetic force and vibration study of dual-stator consequentpole hybrid excitation machine for electric vehicles, IEEE Trans Vehicular Technology, vol. 70, no. 5, pp. 4377–4388 (2021), DOI: 10.1109/TVT.2021.3075461.
  • [8] Qiu H., Yu W., Tang B., Mu Y., Li W., Yang C., Study on the influence of different rotor structures on the axial-radial flux type synchronous machine, IEEE Trans. Ind. Electron., vol. 65, no. 7, pp. 5406–5413 (2018), DOI: 10.1109/TIE.2017.2784339.
  • [9] Zhao X., Niu S., Zhang X. Fu W., Flux-Modulated Relieving-DC-Saturation Hybrid Reluctance Machine With Synthetic Slot-PM Excitation for Electric Vehicle In-Wheel Propulsion, IEEE Transactions on Industrial Electronics, vol. 68, no. 7, pp. 6075–6086 (2021), DOI: 10.1109/TIE.2020.2996140.
  • [10] Li Y., Yu Z., Meng H., Wang J., Jing Y., Design and Optimization of Hybrid-Excited Claw-Pole Machine for Vehicle, IEEE Transactions on Applied Superconductivity, vol. 31, no. 8, pp. 1–4 (2021), DOI: 10.1109/TASC.2021.3094433.
  • [11] Wang D., Wang B., Zhang F., Peng C., Design Consideration of AC Hybrid-Excitation Permanent Magnet Machine with Axial Stator Using Simplified Reluctance Network, IEEE Transactions on Industrial Electronics, vol. 69, no. 12, pp. 12447–12457 (2022), DOI: 10.1109/TIE.2021.3135614.
  • [12] Wang X., Fan Y., Chen Q., Wu Z., Magnetic Circuit Feature Investigation of a Radial–Axial Brushless Hybrid Excitation Machine for Electric Vehicles, IEEE Transactions on Transportation Electrification, vol. 9, no. 1, pp. 382–393 (2023), DOI: 10.1109/TTE.2022.3199435.
  • [13] Zhang Z., Yan Y., Yang S., Bo Z., Principle of operation and feature investigation of a new topology of hybrid excitation synchronous machine, IEEE Transactions on Magnetics, vol. 44, no. 9, pp. 2174–2180 (2008), DOI: 10.1109/TMAG.2008.2000513.
  • [14] Amara Y., Vido L., Gabsi M., Hoang E., Ben Ahmed A.H., Lecrivain M., Hybrid excitation synchronous machines: energy-efficient solution for vehicles propulsion, IEEE Transactions on Vehicular Technology, vol. 58, no. 5, pp. 2137–2149 (2009), DOI: 10.1109/TVT.2008.2009306.
  • [15] Hongbo Qiu, Yuqing Zhang, Xiaolu Ma, Cunxiang Yang, Operating principle and performance analysis of a novel flux–torque regulation hybrid excitation machine with axial–radial magnetic circuit using magnetic network, IET Electric Power Applications, vol. 17, no. 6, pp. 824–834 (2023), DOI: 10.1049/elp2.12306.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d48656d6-6ae8-4828-a2bf-4f4f52fd88e4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.