PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Petrographic, palynological and geochemical recognition of dispersed organic matter in the black Anthracosia Shales (Sudetes, south-west Poland)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We describe the organic petrography, palynology and Rock-Eval pyrolysis values of lacustrine black shales termed the Anthracosia Shales (Upper Carboniferous/Lower Permian) in the Intrasudetic Basin (Sudetes, SW Poland). Samples were taken from cores of two boreholes: Rybnica Leśna PIG 1 and Ścinawka Średnia PIG 1. Maceral composition, miospore assemblage composition, palynofacies and geochemical characteristics of dispersed organic matter in the Anthracosia Shales were used to determine conditions of the environment and to evaluate their petroleum potential. Data from both organic petrography and palynology analyses enabled recognition of three broadly distinct organic associations in these shales: bituminous, humic, and intermediate, while Rock-Eval pyrolysis revealed the presence of bituminous and humic kerogen types I and III. Type I corresponds to the bituminous association, with amorphous organic matter (AOM) dominant in the palynofacies, and type III corresponds to the humic association with phytoclasts prevailing in the palynofacies. The thermal maturity of the organic matter is determined by the values of: (1) vitrinite reflectance VRo = 0.53–0.73%, (2) palynomorph 3–4 colour index, and (3) Tmax = 443–447°C, which indicate oil window maturity. Some of the TOC results (1.6–2.9 wt.%) indicate that the Anthracosia Shales are good and very good petroleum source rocks, though the thickness of this interval is low (4–5 m). Shales with TOC values <0.5 wt.% prevail, and may be classifed as poor source rocks.
Rocznik
Strony
art. no. 36
Opis fizyczny
Bibliogr. 101 poz., fot., rys., tab., wykr.
Twórcy
  • Polish Geological Insti tute – National Research Institute, Lower Silesian Branch, al. Jaworowa 19, 53-122 Wrocław, Poland
  • Institute of Geological Sciences, University of Wrocław, pl. Maxa Borna 9, 52-204 Wrocław, Poland
  • Institute of Geological Sciences, University of Wrocław, pl. Maxa Borna 9, 52-204 Wrocław, Poland
Bibliografia
  • 1. Abou El-Anwar, E., Salman, S., Mousa, D., Aita, S., Makled, W., Gentzis, T., 2021. Organic petrographic and geochemical evaluation of the black shale of the Duwi Formation, El Sebaiya, Nile Valley, Egypt. Minerals, 11: 1416.
  • 2. Awdankiewicz, M., Kurowski, L., Mastalerz, K., Raczyński, P., 2003. The Intra-Sudetic Basin - a record of sedimentary and volcanic processes in late- to postorogenic tectonic setting. Geolines, 16: 165-183.
  • 3. Batten, D.J., 1982. Palynofacies, palaeoenvironments and petroleum. Journal of Micropalaeontology, 1: 107-114.
  • 4. Batten, D.J., 1996. Palynofacies and petroleum potential. Palynology: principle and applications, 3: 1065-1084. American Association of Stratigraphic Palynologists Foundation, Dallas.
  • 5. Bossowski, A., Ihnatowicz A., 1994. Palaeogeography of the uppermost Carboniferous and lowermost Permian deposits in the NE part of the Intra-Sudetic Depression. Geological Quarterly, 38 (4): 709-726.
  • 6. Bossowski, A., Ihnatowicz, A., 2006. Geological Atlas of the Lower Silesian Coal Basin 1:100 000. Polish Geological Institute, Warszawa.
  • 7. Bossowski, A., Ihnatowicz, A., Mastalerz, K., Kurowski, L., Nowak, G. 1995. Lithostratigraphy and sedimentologic-paleogeographic development. Sudetes and Fore-Sudetic area. Intra-Sudetic Depression. Prace Państwego Instytutu Geologicznego, 148: 142-147.
  • 8. Carroll, A.R., Brassell, S.C., Graham, S.A., 1992. Upper Permian lacustrine oil shales, southern Junggar basin, northwest China. AAPG Bulletin, 76: 1874-1902.
  • 9. Carvajal-Ortiz, H., Gentzis, T., 2018. Geochemical screening of source rocks and reservoirs: the importance of using the proper analytical program. International Journal of Coal Geology, 190: 56-69.
  • 10. Cook, A.C., Hutton, A.C., Sherwood, N.R., 1982. Alginite nomenclature. Letter to MOD Commission of the International Committee for Coal Petrology, April 1982.
  • 11. Creaney S., 1980. The organic petrology of the Upper Creataceous Boundary Creek formation, Beaufort-Mackenzie basin. Bulletin of Canadian Petroleum Geology, 28: 112-119.
  • 12. Deaf, A.S., Tahoun, S., Gentzis, T., Carvajal-Ortiz, H., Harding, I.A., Marshall, J.E.A., Ocubalidet, S., 2020. Organic geochemical, palynofacies, and petrographic analyses examining the hydrocarbon potential of the Kharita Formation (Albian) in the Matruh Basin, northwestern Egypt. Marine and Petroleum Geology, 112: 104087.
  • 13. Demaison, G., Huizinga, B.J., 1991. Genetic classification of petroleum systems. AAPG Bulletin, 75: 1626-1643.
  • 14. Demaison, G.J., Moore, G.T., 1980. Anoxic environments and oil source bed genesis. Organic Geochemistry, 2: 9-31.
  • 15. Don, J., 1961. The Permo-Carboniferous of the Nowa Ruda region (in Polish with English summary). Zeszyty Naukowe Uniwersytetu Wrocławskiego, Nauka o Ziemi, 3: 3-49.
  • 16. Dow, W.G., 1977. Kerogen studies and geological interpretations. Journal of Geochemical Exploration, 7: 79-99.
  • 17. Dunn, M.T., 2001. Palynology of the Carboniferous-Permian boundary stratotype, Aidaralash Creek, Kazakhstan. Review of Palaeobotany and Palynology, 116: 175-194.
  • 18. Dyni, J.R., 2006. Geology and resources of some world oil-shale deposits. U.S. Geological Survey Scientific Investigations Report, 2005-5294.
  • 19. Dziedzic, K., 1959. Comparison of Rotliegendes sediments in the region of Nowa Ruda (Middle Sudetes) and Świerzawa (Western Sudetes) (in Polish with English summary). Geological Quarterly, 3: 831-846.
  • 20. Dziedzic, K., 1961. Lower Permian in the Intrasudetic Basin (in Polish with English summary). Studia Geologica Polonica, 6: 1-124.
  • 21. Espitalié, J., Madec, M., Tissot, J., Menning, J., Leplat, P., 1977. Source rock characterization method for petroleum exploration. Proceedings 9th Annual Offshore Technology Conference, 3: 439-448.
  • 22. Fijałkowska-Mader, A., Kuleta, M., Zbroja, S., 2015. Lithostratigraphy, palynofacies and depositional environments of the Triassic deposits in the northern part of the Nida Basin (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 462: 83-124.
  • 23. Ghazwani, A., Littke, R., Sachse, V., Fink, R., Mahlstedt, N., Hartkopf-Fröder, C., 2019. Organic geochemistry, petrology and palynofacies of Middle Devonian lacustrine flagstones in the Orcadian Basin, Scotland: depositional environment, thermal history and petroleum generation potential. Geological Magazine, 155: 773-796.
  • 24. Goodarzi, F., Gentzis, T., Sanei, H., Pedersen, P.K., 2019. Elemental composition and organic petrology of a Lower Carboniferous-age freshwater oil shale in Nova Scotia, Canada. ACS Omega, 4: 20773-20786.
  • 25. Górecka, T, 1981. Results of plynological studies of the Youngest Carboniferous of the Lower Silesia (in Polish with English summary). Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, Monografie, 19: 1-58.
  • 26. Górecka-Nowak, A., 1989. Late Carboniferous spore-pollen assemblages of the Unisław IG-1 borehole (in Polish with English summary). Prace Naukowe Instytutu Górnictwa Politechniki Wrocławskiej, 52, Studia i Materiały, 19: 51-57.
  • 27. Górecka-Nowak, A, 1995. Palynostratigraphy of the Westphalian deposits of the nort-western part of the Intrasudetic Basin (in Polish with English summary). Acta Universitatis Wratislaviensis, Prace Geologiczno-Mineralogiczne, 40.
  • 28. Górecka-Nowak, A., 2008. Palynostratigraphy of the upper most Carboniferous and lowermost Permian sediments in the Sudetes (SW Poland). Terra Nostra, 2: 97.
  • 29. Górecka-Nowak, A., Nowak, G.J., 2008. Charakterystyka petrologiczna i palinologiczna materii organicznej czarnych łupków Sudetów (in Polish). In: First Polish Geological Congres, Kraków (ed. G. Haczewski), Abstracts: 32 .
  • 30. Graham, S.A., Brassell, S., Carroll, A.R., Xiao, X., Demaison, G., Mcknight, C.L., Liang, Y.,Chu, J., Hendrix, M.S., 1990. Characteristics of selected petroleum source rocks, Xinjiang Uygur Autonomous Region, northwest China. AAPG Bulletin, 74: 493-512.
  • 31. Guo, H., He, R., Jia, W., Peng, P., Lei,Y., Luo, X., Wang, X., Zhang, L Jiang, C., 2018. Pore characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang Formation, southeastern Ordos Basin, China. Internationonal Journal of Coal Geology, 91: 279-296.
  • 32. Hackley, P.C., Cardott, B.J., 2016. Application of organic petrography in North American shale petroleum systems: a review. International Journal of Coal Geology, 163: 8-51.
  • 33. Hackley, P.C., Araujo, C.V., Borrego, A.G., Bouzinos, A., Cardott, B.J., Cook, A.C., Eble, C., Flores, D., Gentzis, T., Gonęalves, P.A., Mendonęa Filho, J.G., Hámor-Vidó, M., Jelonek, I., Kommeren, K., Knowles, W., Kus, J., Mastalerz, M., Menezes, T.R., Newman, J., Oikonomopoulos, I.K., Pawlewicz, M., Pickel, W., Potter, J., Ranasinghe, P., Read, H., Reyes, J., Rosa Rodriguez, G.D.L., Alves Fernandes de Souza, I.V., Suárez-Ruiz, I., Sýkorová, I., Valentine, B.J., 2015. Standardization of reflectance measurements in dispersed organic matter: results of an exercise to improve interlaboratory agreement. Marine and Petroleum Geology, 59: 22-34.
  • 34. Hackley, P.C., Fishman, N., Wu, T., Baugher, G., 2016. Organic petrology and geochemistry of mudrocks from the lacustrine Lucaogou formation, Santanghu Basin, northwest China: application to lake basin evolution. International Journal of Coal Geology, 168: 20-34.
  • 35. Hackley, P.C., Zhang, L., Zhang, T., 2017. Organic petrology of peak oil maturity Triassic Yanchang Formation lacustrine mudrocks, Ordos Basin, China. Interpretation, 5: SF211-SF223.
  • 36. Huijuan, G., Ruliang, H., Wanglu, J., Ping'an, P., Yuhong, L., Xiaorong, L., Xiangzeng, W., Lixia, Z., Chengfu, J., 2018 Pore characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang Formation, southeastern Ordos Basin, China. Marine and Petroleum Geoloy, 91: 279-296.
  • 37. ICCP, 1998. The new vitrinite classificat ion (ICCP system 1994). Fuel, 77: 349-358.
  • 38. ICCP, 2001. The new inertinite classification (ICCP System 1994). Fuel, 80: 459-471.
  • 39. ISO 7404-2, 2009. Methods for the petrographic analysis of coals: Part 2: methods of preparing coal Samples, ISO 7404-2:2009(en); International Organization for Standardization. www.iso.org/standard/42832.html
  • 40. ISO 7404-5, 2009. Methods for the petrographic analysis of coals: Part 5: methods of preparing coal Samples, ISO 7404-5:2009(en); International Organization for Standardization. www.iso.org/standard/42798.html
  • 41. Jadoon, Q.H., Roberts, E., Blenkinsop, T., Wust, R., 2016. Organic petrography and thermal maturity of the Permian Roseneath and Muteree shales in the Cooper Basin, Australia. International Journal of Coal Geology, 154-155: 240-256.
  • 42. Jerzykiewicz, J., 1987. Latest Carboniferous (Stephanian) and Early Permian (Autunian) palynological assemblages from the Intrasudetic Basin, southwestern Poland. Palynology, 11: 117-137.
  • 43. Karnkowski, P., Pikulski, L., Wolnowski, T., 2010. Petroleum geology of the Polish part of the Baltic region - an overview. Geological Quarterly, 54: 143-158.
  • 44. Kosakowski, P., Kotarba, M., Piestrzyński, A., Shogenova, A., Więcław, D., 2016. Petroleum source rock evaluation of the Alum and Dictyonema Shales (Upper Cambrian-Lower Ordovician) in the Baltic Basin and Podlasie Depression (eastern Poland). International Journal of Earth Sciences, 106: 743-761.
  • 45. Körmösa, S., Bechtel, A., Sachsenhofer, R.F., Radovicsc, B.G., Milotac, K., Schubert, F., 2020. Petrographic and organic geochemical study of the Eocene Kosd Formation (northern Pannonian Basin): Implications for paleoenvironment and hydrocarbon source potential. International Journal of Coal Geology, 228: 103555.
  • 46. Kus, J., Araujo, C.V., Borrego A.G., Flores D., Mendonca Filho, J.G., Hackley, P.C., Hamor-Vidó, M., Kalaitzidis, S., Kommeren, C.J., Kwiecińska, B., Mastalerz, M., Menezes, T.R., Misz-Kennan, M., Nowak, G.J., Petersen, H.I., Rallakis, D., Suarez-Ruiz, I., Sýkorová, I., Životić, D., 2017. Identification of alginite and bituminite in rocks other than coals: results of interlaboratory exercises of the Identification of Dispersed Organic Matter Working Group of the ICCP. International Journal of Coal Geology, 178: 26-38.
  • 47. Lafargue, E., Marquis, F., Pillot, D., 1998. Rock-Eval 6 Applications in Hydrocarbon Exploration, Production, and Soil Contamination Studies. Revue l'Institute. Franais du Petrole, 53: 421-437.
  • 48. Lewan, M.D., 1983. Effects of thermal maturation on stable organic carbon isotopes as determined by hydrous pyrolysis of Woodford Shale. Geochimica et Cosmochimica Acta, 47: 1471-1479.
  • 49. Leventhal J., 1993. Metals and black shales. In: Organic Geochemistry (eds. M.H. Engel and S.A. Macko): 581-592. Principles and Applications, Plenum Press, New York.
  • 50. Lin, L., Zhang, J., Li, Y., Jiang, S., Tang, X., Jiang, S., Jiang, W., 2013. The potential of China's lacustrine shale gas resources. Energy Exploration and Exploitation, 31: 317-335.
  • 51. Liu, B., Bechtel, A., Sachsenhofer, R.F., Gross, D., Gratzer, R., Chen, X., 2017. Depositional environment of oil shale within the second member of Permian Lucaogou Formation in the Santanghu Basin, Northwest China. International Journal of Coal Geology, 175: 10-25.
  • 52. Liu, B., Bechtel, A., Gross, D., Fu, X., Li, X., Sachsenhofer, R.F., 2018. Middle Permian environmental changes and shale oil potential evidenced by high-resolution organic petrology, geochemistry and mineral composition of the sediments in the Santanghu Basin, Northwest China. International Journal of Coal Geology, 185: 119-137.
  • 53. Lojka, R., Drábková, J., Zajíc, J., Sýkorová, I., Franců, J., Bláhová, A., Grygar, T., 2009. Climate variability in the Stephanian B based on environmental record of the Mšec Lake deposits (Kladno-Rakovník Basin, Czech Republic). Palaeogeography, Palaeoclimatology, Palaeoecology, 280: 78-93.
  • 54. Lojka, R., Sýkorová, I., Laurin, J., Matysová, P., Matys Grygar, T., 2010. Lacustrine couplet-lamination: evidence for Late Pennsylvanian seasonality in central equatorial Pangaea (Stephanian B, Mšec Member, Central and Western Bohemian basins). Bulletin of Geosciences, 85: 709-734.
  • 55. Lorenc, S., 1993. Distribution, lithology and approximate geochemical features of the Sudetes black shales (in Polish with English summary). Prace Geologiczno-Mineralogiczne, 33: 179-208.
  • 56. Macellari, C., Whaley, J., 2019. The Vaca Muerta Formation: how a source became a reservoir. Geoexpro, 16: 15-17.
  • 57. Mansour, A., Gerslova, E. Sykorova, I., Vöröš, D., 2020. Hydrocarbon potential and depositional paleoenvironmental of a Middle Jurassic succession in the Falak-21 well, Shushan Basin, Egypt: integrated palynological, geochemical and organic petrographic approach. International Journal of Coal Geology, 219: 103374.
  • 58. Martinek, K., Blecha, M., Daněk, V., Franců, J., Hladíková, J., Johnová, R., Uličný, D., 2006. Record of palaeoenvironmental changes in Lower Permian organic-rich lacustrine succession: Intragrated sedimentological and geochemical study of the Rudnik member, Krkonoše Piedmont Basin, Czech Republic. Palaeogeography, Palaeoclimatology, Palaeoecology, 230: 85-128.
  • 59. Mastalerz, K., 1990. Lacustrine successions in fault-bounded basins: 1 Upper Anthracosia Shale (Lower Permian) of the North Sudetic Basin, SW Poland. Annales Societatis Geologorum Poloniae, 60: 75-106.
  • 60. Mastalerz, K., Nehyba S., 1997. Comparison of Rotliegende lacustrine depositional sequences from the Intrasudetic, Northsudetic and Boskovice basins (Central Europe). Geologia Sudetica, 30: 21-58.
  • 61. Mastalerz, K., Wojewoda, J., 1988. Rotliegendes sedimentary basins in the Sudetes, central Europe. In: Workshop on Rotliegendes Lacustrine Basins, Książ Castle, 26-28 October 1988, Guidebook (ed. H. Kiersnowski): 1-9.
  • 62. Mastalerz, M., Drobniak, A., Stankiewicz, A.B., 2018. Origin, properties and implications of solid bitumen in source-rock reservoirs: a review. International Journal of Geology, 195: 14-36.
  • 63. Mendonça Filho, J.G., Menezes, T.R., Mendonęa, J.O., Oliveira, A.D., Silva, T.F., Rondon, N.F., Silva, F.S., 2012. Organic Facies: Palynofacies and Organic Geochemistry Approaches. Geochemistry - Earth's System Processes. Ed. Panagiotaras D., Intech Open Book Series: 211-248.
  • 64. Mengying, L., Xinkai, C., 2021. Acomparison of geological characteristics of the main continental shale oil in China and the U.S. Lithosphere, 1.
  • 65. Meyers, P.A., Pratt, L.M., Nagy, B., 1992. Geochemistry of metalliferous black shales. Chemical Geology, 99: 1-211.
  • 66. Miecznik, J.B., 1989. The Upper Silesian and Lower Autunian from NE limb of the Intta-Sudetic Depression (in Polish with English summary). Biuletyn Państwowego Instytutu Geologicznego, 363: 5-40.
  • 67. Mohamed, O., Mahdy, F., Sameh, S,. Tahoun, S.S., 2020. Palynofacies analysis and source rock evaluation of the Upper Cretaceous-Oligocene succession in the Drazia-1 well, Alamein Basin, Egypt. Arabian Journal of Geosciences, 11 (13), Iss. 22.
  • 68. Ndip, E.A, Agyingi, C.M., Nton, M.E., Hower, J.C., Oladunjoye, M.A., 2019. Organic petrography and petroleum source rocks evaluation of the Cretaceous Mamfe Formation, Mamfe basin, southwest Cameroon. International Journal of Coal Geology, 202: 27-37.
  • 69. Nemec, W., Porębski, S., Teisseyre, A.K., 1982. Explanatory notes to the lithotectonic molasse profile of the Intra-Sudetic Basin, Polish Part. Veröffentlichungen des Zentralinstituts für Physik der Erde, Akademie der Wissenschaften der DDR, 66: 267-278.
  • 70. Nowak, G.J., 1998. Microscopic identification and classification of organic matter of the Upper Carboniferous Anthracosia Shales, Intra-Sudetic Depression, southwestern Poland. Geological Quarterly, 42: 41-58.
  • 71. Nowak, G.J., 2003. Petrology of organic matter dispersed in Late Palaeozoic sedimentary rocks of southwestern Poland (in Polish with English summary). Cuprum, 4 (29): 1-209.
  • 72. Nowak, G.J., 2007. Comparative studies of organic matter petrography of the late palaeozoic black shales from Southwestern Poland. International Journal of Coal Geology, 71: 568-585.
  • 73. Nowak, G.J., Speczik, S., Oszczepalski, S., 2001. Petrographic composition of organic matter in the Kupferschiefer horizon of Poland. In: Mineral Deposits at the Beginning of the 21st Century (ed. A. Piestrzyński): 67-70. A.A. Balkena Publishers Lisse/Abingdon/Exto (PA)/Tokyo.
  • 74. Obermajer, M., Foyer, M.G., Goodarzi, F., Snowdon, L.R. 1997. Organic petrology and organic geochemistry of Devonian black shales in southwestern Ontario, Canada. Organic Geochemistry, 26: 229-246.
  • 75. Oszczepalski, S., Nowak, G.J., Bechtel, A., Zák, K., 2002. Evidence for oxidation of the Kupferschiefer in the Lubin-Sieroszowice deposit, Poland: implication for Cu-Ag and Au-Pt-Pd mineralization. Geological. Quarterly, 46: 1-23.
  • 76. Panja, P., Velasco, R., 2018. Production of liquid hydrocarbons from shales. In: Encyclopedia of Petroleum Geosciences (ed. R. Sarhabi). Encyclopedia of Earth Sciences Series, Springer, Cham.
  • 77. Peters, K.E., Cassa, M.R., 1994. Guidelines for evaluating source rocks geochemistry. AAPG Memoir, 60: 93-120.
  • 78. Pickel, W., Kus, J., Flores, D., Kalaitzidis, S., Christanis, C., Cardotte, B.J., Misz-Kennan, M., Rodriguesg, S., Hentschel, A., Hamor-Vido, M., Crosdale, P., Wagner, N., ICCP. 2017. Classification of liptinite - ICCP System 1994. International Journal of Coal Geolology, 169: 40-61.
  • 79. Pratt, L.M., 1984. Influence of paleoenvironmental factors on preservation of organic matter in Middle Cretaceous Greenhorn Formation, Pueblo, Colorado. AAPG Bulletin, 68: 1146-1159.
  • 80. Rimmer, S.M., Thompson, J.A., Goodnight, A.A., Robl, T.L., 2004. Multiple controls on the preservation of organic matter in Devonian-Mississipian marine black shales: geochemical and petrographic evidence. Palaeogeography, Palaeoclimatology, Palaeoecology, 215: 125-154.
  • 81. Robert, P., 1979. Classification des matieres organiques en fluorescence. Applications aux roches-meres petrolieres. Bulletin des Centres de Recherches Exploration-production Elf-Aquitaine, 3: 223-263.
  • 82. Robl, T.L Rimmer, S.M., Barron, L.S., 1992. Organic petrography of Mississipian and Devonian shales in east-central Kentucky. Fuel, 71: 267-271.
  • 83. Sachsenhofer, R.F., Bechtel, A., Reischenbacher, D., Weiss, A., 2003. Evolution of lacustrine systems along the Miocene Mur-Mürz fault system (Eastern Alps, Austria) and implications on source rocks in pull-apart basins. Marine and Petroleum Geology, 20: 83-110.
  • 84. Sanei, H., 2020. Genesis of solid bitumen. Scientific Reports, 10: 1559. Scott, A.C., 2020. Fire: A Very Short Introduction. Oxford University Press.
  • 85. Scott, A.C., 2022. Charcoalified vegetation from the Pennsylvanian of Yorkshire, England: Implications for the interpretation of Carboniferous wildfires. Review of Palaeobotany and Palynology, 296: 104540.
  • 86. Scott, A.C., Jones, T.P., 1994. The nature and influence of fire in the Carboniferous ecosystems. Palaeogeography, Palaeoclimatology, Palaeoecology, 106: 91-112.
  • 87. Sliaupa, S., Sliaupiene, R., Zaludiene, G., Vaskaboinikava, T., Bibikava, A., Evstratenko, L., Kovkhuto, A., 2016. Prospects of Lithuanian Silurian shale gas, Baltic sedimentary basin. Oil Shale33: 357-372.
  • 88. Speczik, S., Bechtel, A., Sun, Y.Z., Püttman, W., 1995. A stable isotope and organic geochemical study of the relationship between the Anthracosia Shale and Kupferschiefer mineralization (SE Poland). Chemical Geology, 123: 133-151.
  • 89. Speczik, S., Oszczepalski, S., Nowak, G.J., Grotek, I., Niczyporuk, K., 2003. Organic matter alteration trends in the Polish Kupferschiefer: Ore genetic implications. Mineral exploration and Sustainable Development (ed. D. Eliopoulos). Millpress, Rotterdam.
  • 90. Stach, E., Mackowsky M.-Th., Teichmüller, M., Taylor G.H., Chandra, D., Teichmüller, R. 1982. Textbook of Coal Petrology. 3rd edn. Gebrüder Borntraeger.
  • 91. Stárková, M., Martínek, K., Mikuláš, R., Rosenau, N., 2015. Types of soft-sediment deformation structures in a lacustrine Ploužnice member (Stephanian, Gzhelian, Pennsylvanian, Bohemian Massif), their timing, and possible trigger mechanism. International Journal of Earth Sciences, 104: 1277-1298.
  • 92. Suarez-Ruiz, I., Flores, D., Mendonca Filho, J.G., Hackley, P., 2012. Review and update of the applications of organic petrology: Part 1, geological applications. International Journal of Coal Geology, 99: 54-112.
  • 93. Taylor, G.H., Teiichmüller, M., Davis, A., Diessel, C.F.K., Littke, R. Robert, R., 1998. Organic Petrology. Gebrüder Borntraeger. Berlin, Stuttgart.
  • 94. Teichmüller, M., 1974. Über neue Macerale der Liptinit-Gruppe und die Entstehung von Micrinit. Fortschritte in der Geologie von Rheinland und Westfalen, 24: 37-64.
  • 95. Teichmüller, M., Ottenjann, K., 1977. Art und Diagenese von Liptiniten und lipoiden Stoffen in einem Erdölmuttergestein aufgrund fluoreszenmikroskopischer Untersuchungen. Erdoel, Kohle, Petrochemie, 30: 387-398.
  • 96. Trzepierczyńska, A., 1994. Microfloristic studies of the Ścinawka Dolna IG-1 borehole. In: Palaeogeography of the Upper Carboniferous and Lower Autunian deposits in the Nowa Ruda region (ed. A. Bossowski). Polish Geological Institute, Wrocław, Warszawa, NAG: 728/94 (unpubl. report).
  • 97. Tyson, R.V., 1995. Sedimentary Organic Matter. Organic Facies and Palynofacies. Chapman and Hall, Londres.
  • 98. Uglik, M., Nowak, G.J., 2015. Petrological recognition of bituminous inertinite enriched coals of the Lower Silesian Coal Basin (Central Sudetes, SW Poland). International Journal of Coal Geology, 139: 49-62.
  • 99. Wyżykowski J., 1954. Preliminary report on the occurrence of Cu mineralization in the Intrasudetic Basin. Internal report. Polish Geological Institute, Warszawa, NAG: R/3584 (unpubl. report).
  • 100. Yawanarajah, S.R., Kruge, M.A., Mastalerz, M., Śliwiński, W., 1993. Organic geochemistry of Permian organic-rich sediments from the Sudetes area, SW Poland. Organic Geochemistry, 20: 267-281.
  • 101. Zang, W., Yang, W., Xie, L., 2017. Controls of organic matter accumulation in the Triassic Chang lacustrine shale of the Ordos Basin, central China. International Journal of Coal Geology, 183: 38-51.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d482ee47-a1c2-4392-8ac1-da80fd86fe49
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.