PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Rupture assessment of rubber/clay nanocompositescontaining a crack by means of an energy-basedfracture criterion

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Due to the growing use of nanotechnology in the modern era, the application of nanoma-terials in elastomers has also been increased. Although some limited experiments areavailable in the previous studies regarding the fracture behavior of rubber nanocomposiDue to the growing use of nanotechnology in the modern era, the application of nanoma-terials in elastomers has also been increased. Although some limited experiments areavailable in the previous studies regarding the fracture behavior of rubber nanocompositescontaining a crack, no criteria have been presented so far. To fill this gap, the currentresearch is devoted to develop a criterion for rupture assessment of rubber nanocompositesweakened by a crack. First, some fracture tests are performed on cracked rubber/claynanocomposites. The prepared nanocomposites are made of ethylene–propylene-dienemonomer/styrene-butadiene rubber/CLOISITE 15. Afterwards, the averaged strain energydensity (ASED) criterion, as one of the most used energy-based criteria, is extended andutilized in nano-reinforced hyperelastic materials. The nearly uniaxial state of stress fieldnext to the crack tip in rubber nanocomposites, which is the main prerequisite for thecriterion extension, is proved by means of non-linear finite element modelling. Finally, theestimations of the criterion is compared with the corresponding experimental data and goodagreement is achieved which reveals the high performance of the ASED criterion in the caseof cracked rubbers filled with nanoparticles.tescontaining a crack, no criteria have been presented so far. To fill this gap, the currentresearch is devoted to develop a criterion for rupture assessment of rubber nanocompositesweakened by a crack. First, some fracture tests are performed on cracked rubber/claynanocomposites. The prepared nanocomposites are made of ethylene–propylene-dienemonomer/styrene-butadiene rubber/CLOISITE 15. Afterwards, the averaged strain energydensity (ASED) criterion, as one of the most used energy-based criteria, is extended andutilized in nano-reinforced hyperelastic materials. The nearly uniaxial state of stress fieldnext to the crack tip in rubber nanocomposites, which is the main prerequisite for thecriterion extension, is proved by means of non-linear finite element modelling. Finally, theestimations of the criterion is compared with the corresponding experimental data and goodagreement is achieved which reveals the high performance of the ASED criterion in the caseof cracked rubbers filled with nanoparticles.
Rocznik
Strony
1458--1467
Opis fizyczny
Bibliogr. 32 poz., rys., wykr.
Twórcy
  • Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics,School of Mechanical Engineering, Iran University of Science and Technology, Narmak 16846, Tehran, Iran
  • Fatigue and Fracture Research Laboratory, Center of Excellence in Experimental Solid Mechanics and Dynamics,School of Mechanical Engineering, Iran University of Science and Technology, Narmak 16846, Tehran, Iran
  • NTNU Department of Engineering Design and Materials, Richard Birkelands vei 2b, 7491 Trondheim, Norway
  • Center for Advanced Composite Materials, Universiti Teknologi Malaysia, 81310 Johor Bahru, Malaysia
Bibliografia
  • [1] K. Zeynali, H.S. Monir, N.M. Mirzai, J.W. Hu, Experimental andnumerical investigation of lead-rubber dampers in chevronconcentrically braced frames, Arch. Civ. Mech. Eng. 18 (2018)162–178.
  • [2] D.M. Bielinski, Tribological consequences of rubbercomposition and structure—case studies, Arch. Civ. Mech.Eng. 7 (2007) 15–26.
  • [3] N.T. Lai, H. Ismail, M.K. Abdullah, R.K. Shuib, Optimization of pre-structuring parameters in fabrication of magnetorheologicalelastomer, Arch. Civ. Mech. Eng. 19 (2019) 557–568.
  • [4] D.M. Bielinski, A. Stepkowska, Mechanical properties andfriction of rubber vulcanizates: aspects of crosslink structure,Arch. Civ. Mech. Eng. 13 (2013) 192–198.
  • [5] M. López-Manchado, B. Herrero, M. Arroyo, Preparation andcharacterization of organoclay nanocomposites based onnatural rubber, Polym. Int. 52 (2003) 1070–1077.
  • [6] Q.-X. Jia, Y.-P. Wu, Y.-Q. Wang, M. Lu, L.-Q. Zhang, Enhancedinterfacial interaction of rubber/clay nanocomposites by anovel two-step method, Compos. Sci. Technol. 68 (2008) 1050–1056.
  • [7] Y. Liang, W. Cao, Z. Li, Y. Wang, Y. Wu, L. Zhang, A newstrategy to improve the gas barrier property of isobutylene-isoprene rubber/clay nanocomposites, Polym. Test. 27 (2008)270–276.
  • [8] A.S.Z. Naseri, A. Jalali-Arani, A comparison between theeffects of gamma radiation and sulfur cure system on themicrostructure and crosslink network of (styrene butadienerubber/ethylene propylene diene monomer) blends inpresence of nanoclay, Radiat. Phys. Chem. 115 (2015) 68–74.
  • [9] G.O. Konstantinovich, S.V. Vasil'evich, S.A. L'vovich, S.A.Konstantinovich, K.W. Stöckelhuber, Visco-elastic-plasticproperties of natural rubber filled with carbon black andlayered clay nanoparticles. Experiment and simulation,Polym. Test. 63 (2017) 133–140.
  • [10] M.R. Ayatollahi, S.A. Mirmohammadi, H.A. Shirazi, Thetension-shear fracture behavior of polymeric bone cementmodified with hydroxyapatite nano-particles, Arch. Civ.Mech. Eng. 18 (2018) 50–59.
  • [11] G. Ramorino, S. Agnelli, R.D. Santis, T. Riccò, Investigation offracture resistance of natural rubber/clay nanocomposites byJ-testing, Eng. Fract. Mech. 77 (2010) 1527–1536.
  • [12] S. Agnelli, G. Ramorino, S. Passera, J. Karger-Kocsis, T. Riccò,Fracture resistance of rubbers with MWCNT, organoclay,silica and carbon black fillers as assessed by the J-integral:effects of rubber type and filler concentration, Express Polym.Lett. 6 (2012) 581–587.
  • [13] P. Berki, J. Karger-Kocsis, Comparative properties of Styrene-Butadiene Rubbers (SBR) containing pyrolytic carbon black,conventional carbon black and organoclay, J. Macromol. Sci.Part B- Phys. 55 (2016) 749–763.
  • [14] P. Berki, J. Karger-Kocsis, Tensile and fracture mechanicalproperties of styrene-butadiene rubbers (SBR) filled withindustrial and pyrolytic carbon blacks, and organoclay, in:Materials Science Forum, Trans Tech Publications, 2017, pp.292–297.
  • [15] F. Berto, P. Lazzarin, Recent developments in brittle andquasi-brittle failure assessment of engineering materials bymeans of local approaches, Mat. Sci. Eng. R-Rep. 75 (2014) 1–48.
  • [16] F.J. Gómez, M. Elices, F. Berto, P. Lazzarin, Fracture of V-notched specimens under mixed mode (I + II) loading inbrittle materials, Int. J. Fract. Mech. 159 (2009) 121–135.
  • [17] F. Berto, M.R. Ayatollahi, Fracture assessment of Braziliandisc specimens weakened by blunt V-notches under mixedmode loading by means of local energy, Mater. Design 32(2011) 2858–2869.
  • [18] F. Berto, E. Barati, Fracture assessment of U-notches underthree point bending by means of local energy density, Mater.Design 32 (2011) 822–830.
  • [19] A.R. Torabi, F. Berto, A. Campagnolo, Elastic-plastic fractureanalysis of notched Al 7075-T6 plates by means of the localenergy combined with the equivalent material concept, Phys.Mesomech. 19 (2016) 204–214.
  • [20] F. Berto, P. Lazzarin, C. Marangon, Brittle fracture of U-notched graphite plates under mixed mode loading, MaterDesign 41 (2012) 421–432.
  • [21] P. Lazzarin, F. Berto, M.R. Ayatollahi, Brittle failure of inclinedkey-hole notches in isostatic graphite under in-plane mixedmode loading, Fatigue Fract. Eng. Mater. Struct. 36 (2013) 942–955.
  • [22] L. Marsavina, F. Berto, R. Negru, D.A. Serban, E. Linul, Anengineering approach to predict mixed mode fracture of PURfoams based on ASED and micromechanical modelling,Theor. Appl. Fract. Mec. 91 (2017) 148–154.
  • [23] A. Piccotin, L. Marsavina, F. Berto, R. Negru, Fractureparameters determination of polyurethane materials forapplication of SED criteria to notched components,Procedia. Struct. Int. 2 (2016) 1861–1869.
  • [24] F. Berto, L. Marsavina, S.M.J. Razavi, M.R. Ayatollahi, On thefracture behavior of polyurethane notched components,Procedia. Struct. Int. 3 (2017) 144–152.
  • [25] CLOISITE 15 Data Sheet ; BYK Additives Inc., in.
  • [26] M. Heydari-Meybodi, M.R. Ayatollahi, F. Berto, Averagedstrain energy density criterion for rupture assessment ofcracked rubbers: a novel method for determination of criticalSED, Eng. Fract. Mech. 190 (2018) 93–103.
  • [27] M. Heydari-Meybodi, M.R. Ayatollahi, F. Berto, Ruptureanalysis of rubber in the presence of a sharp V-shape notchunder pure mode-I loading, Int. J. Mech. Sci. 146-147 (2018)405–415.
  • [28] M.H. Meybodi, S. Saber-Samandari, M. Sadighi, M.R. Bagheri,Low-velocity impact response of a nanocomposite beamusing an analytical model, Lat. Am. J. Solids Stru. 12 (2015)333–354.
  • [29] H. Zarei, M. Fallah, H. Bisadi, A. Daneshmehr, G. Minak,Multiple impact response of temperature-dependent carbonnanotube -reinforced composite (CNTRC) plates with generalboundary conditions, Compos. Part B-Eng. 113 (2017) 206–217.
  • [30] Hibbitt, Karlsson, Sorensen, ABAQUS 6.14 User's Manuals, in,Dassault Systèmes Simulia Corp., Providence, Rhode Island,USA, 2014.
  • [31] P. Lazzarin, R. Zambardi, A finite-volume-energy basedapproach to predict the static and fatigue behavior ofcomponents with sharp V-shaped notches, Int. J. Fract.Mech. 112 (2001) 275–298.
  • [32] P. Lazzarin, F. Berto, Some expressions for the strain energyin a finite volume surrounding the root of blunt V-notches,Int. J. Fract. Mech. 135 (2005) 161–185.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d47ef09d-2173-48b2-be28-f80e811aa67d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.