Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this investigation, the analogy between thermal and mass diffusive effects of a free convective flow in a rectangular enclosure is emphasized. The upwind finite volume method is used to discretize the governing equations of the continuity, momentum, energy and mass transfer. The novelty in this exploration is to appropriately modify the well-known Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) algorithm so that it suits to the present problem and thereby, the new flow variables such as the temperature and the concentration are computed. An empirical correlation for the average Sherwood number (Sh) that does not exist in literature is suggested in this work. The average Sherwood numbers for distinct fluids (gases and liquids) are calculated, and mass diffusion effects within the horizontal rectangle are analyzed. The average Nusselt numbers (Nu) are calculated for distinct fluids such as liquids (Pr ≫1), liquid metals (Pr≪1) and gases (Pr < 1) for different Rayleigh numbers in the range of 3x105 ≤ RaL ≤ 7x10 9 from relevant empirical correlations existing in the literature. Accordingly, the thermal diffusion effects within the horizontal rectangle are analyzed.
Słowa kluczowe
Rocznik
Tom
Strony
5--20
Opis fizyczny
Bibliogr. 18 poz., rys.
Twórcy
autor
- Department of Mathematics Faculty of Mathematical Sciences University of Delhi Delhi-110007, India
Bibliografia
- [1] Allenborn, N., Raszillier, H., & Durst, F. (1999). Lid-driven cavity with heat and mass transport. International Journal of Heat and Mass Transfer, 42, 833-853.
- [2] Corcione, M. (2003). Effects of the thermal boundary conditions at the side walls upon natural convection in rectangular enclosures heated from below and cooled from above. International Journal of Thermal Sciences, 42, 199-208.
- [3] Deng, Q.-H., & Tang, G.-F. (2002). Numerical visualization of mass and heat transport for conjugate natural convection/heat conduction by streamline and heatline. International Journal of Heat and Mass Transfer, 45, 2373-2385.
- [4] Deng, Q.-H., Tang, G.-F., & Li, Y. (2002). A combined temperature scale for analyzing natural convection in rectangular enclosures with discrete wall heat sources. International Journal of Heat and Mass Transfer, 45, 3437-3446.
- [5] Teamah, M.A., & Maghlany, M.E. (2010). Numerical simulation of double-diffusive mixed convective flow in rectangular enclosure with insulated moving lid. International Journal of Thermal Sciences, 49, 1625-1638.
- [6] Globe, S., & Dropkin, D. (1959). Natural convection heat transfer in liquids confined by two horizontal plates and heated from below. Journal of Heat Transfer, 81, 24-28.
- [7] Hollands, K.G.T., Raithby, G.D, & Konicek, L. (1975). Correlation equations for free convection heat transfer in horizontal layers of air and water. International Journal of Heat and Mass Transfer, 18, 879-884.
- [8] Hoseinzadeh, S., Ostadhossein, R., Mirshahvalad, H.R., & Seraj, J. (2017). Using SIMPLER algorithm for cavity flow problem. Mechatronics and Applications: An International Journal (MECHATROJ), 1, 55-63.
- [9] Hoseinzadeh, S., Ghasemiasl, R., Havaei, A., & Chamkha, A.J. (2018). Numerical investigation of rectangular thermal energy storage units with multiple phase change materials. Journal of Molecular Liquids, 271, 655-660.
- [10] Hoseinzadeh, S., Moafi, A., Shirkhani, A., & Chamkha, A.J. (2019). Numerical validation heat transfer of rectangular cross-section porous fins. Journal of Thermophysics and Heat Transfer, 33(3), 698-704.
- [11] Hoseinzadeh, S., Heyns, P.S., Chamkha, A.J., & Shirkhani, A. (2019). Thermal analysis of porous fins enclosure with the comparison of analytical and numerical methods. Journal of Thermal Analysis and Calorimetry, 138, 727-735.
- [12] Hoseinzadeh, S., Heyns, P.S., & Kariman, H. (2019). Numerical investigation of heat transfer of laminar and turbulent pulsating Al2O3/water nanofluid flow. International Journal of Numerical Methods for Heat and Fluid Flow, 30, 1149-1166.
- [13] Nithyadevi, N., Divya, V., & Rajarathinam, M. (2017). Effect of Prandtl number on natural convection in rectangular enclosure with discrete heaters. Journal of Applied Science and Engineering, 20(2), 173-182.
- [14] Patankar, S.V., & Spalding, D.B. (1972). A calculation procedure for heat, mass and momentum transfer in three-dimensional parabolic flows. International Journal of Heat and Mass Transfer, 15(10), 1787-1806.
- [15] Saglam, M., Sarper, B., & Aydin, O. (2017). Natural Convection Inside a Rectangular Enclosure with Two Discrete Heat Sources Placed on Its Bottom Wall. Proceedings of the 2nd World Congress on Momentum, Heat and Mass Transfer, MHMT’17, 1-8.
- [16] Ambethkar, V., & Basumatary, L.R. (2019). Numerical solutions of steady free convective flow in a rectangular region with discrete wall heat and concentration sources. Journal of Applied Mathematics and Computational Mechanics, 8(4), 5-18.
- [17] Mostafa Ghiaasiaan, S. (2011). Convective Heat and Mass Transfer. Cambridge University Press.
- [18] Versteeg, H.K., & Malalasekera, W. (2010). An Introduction to Computational Fluid Dynamics: The Finite Volume Method, Pearson.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d47d8596-2add-4868-84f4-8c3fc2521f11