PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Effect of Humidity and Dopants on the Detection of TNT Vapor by Differential Ion Mobility Spectrometry (DMS)

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of this study was to investigate the effect of an external factor, i.e. humidity, on the detectability of TNT vapor by Differential Ion Mobility Spectrometry (DMS). The values of TNT signal amplitude and asymmetric voltage were measured as a function of relative air humidity. The influence of the use of a semi-permeable membrane and the additive agent - dopant (nicotine and dichloromethane) on the detection under varying air humidity conditions was also investigated. The analysis of the obtained results confirms that the introduction of dopant to the analyzed stream contributes to the change of TNT detection parameters. The DMS detector allows you to observe the signal in two polarizations (positive and negative), which is an advantage compared to the competitive FAIMS method. It was observed that water vapor content above 30% causes the formation of two analytical signals for TNT. This, in turn, may improve the identification process. The addition of nicotine and dichloromethane reduces the amplitude of the air signal, which has a beneficial effect on TNT detection.
Rocznik
Strony
298--319
Opis fizyczny
Bibliogr. 31 poz., rys.
Twórcy
  • Military Institute of Chemistry and Radiometry, 105 gen. A. Chruściela „Montera” Av., 00-910 Warsaw, Poland
  • Department of High-Energetic Materials, Faculty of Chemistry, Warsaw University of Technology, 3 Noakowskiego Street, 00-664 Warsaw, Poland
  • The Polish Chamber of Chemical Industry, 17 Jana i Jędrzeja Śniadeckich Street, 00-654 Warsaw, Poland
Bibliografia
  • [1] Federrolf, D.D.; Clark, T.D. Detection of Trace Explosive Evidence by Ion Mobility Spectrometry. Proc. 1st Int. Symp. Explosive Detection Technology, Atlantic City, NJ, 1991.
  • [2] Garofolo, F.; Migliozzi, V.; Roio, B.; davies, J.H. Application of Ion Mobility Spectrometry to the Identification of Trace Levels of Explosives in the Presence of Complex Matrices. Rapid Commun. Mass Spectrom. 1994, 8: 527-532; https://doi.org/10.1002/rcm.1290080707.
  • [3] Garofolo, F.; Marziali, F.; Migliozzi, V.; Stama, A. Rapid Quantitative Determination of 2,4,6-Trinitrotoluene by Ion Mobility Spectrometry. Rapid Commun. Mass Spectrom. 1996, 10: 1321-1326; https://doi.org/10.1002/(SICI)1097-0231(199608)10:11<1321::AID-RCM556>3.0.CO;2-4.
  • [4] Ewing, R.G.; Atkinson, D.A.; Eiceman, G.A.; Ewing, G.J. A Critical Review of Ion Mobility Spectrometry for the Detection of Explosives and Explosive Related Compounds. Talanta 2001, 54: 515-529; https://doi.org/10.1016/s0039-9140(00)00565-8.
  • [5] Li, F.; Xie, Z.; Schmidt, H.; Sielemann, S.; Baumbach, J.I. Ion Mobility Spectrometer for Online Monitoring of Trace Compounds. Spectrochim. Acta B 2002, 57: 1563-1574.
  • [6] Keller, T.; Keller, A.; Tutsch-Bauer, E.; Monticelli, F. Application of Ion Mobility Spectrometry in Cases of Forensic Interest. Forensic Sci. Int. 2006, 161: 130-140; https://doi.org/10.1016/j.forsciint.2006.03.032.
  • [7] Zalewska, A.; Pawłowski, W.; Tomaszewski, W. Limits of Detection of Explosives as Determined with IMS and Field Asymmetric IMS Vapor Detectors. Forensic Sci. Int. 2013, 226: 168-172; https://doi.org/10.1016/j.forsciint.2013.01.005.
  • [8] Pawłowski, W.; Zalewska, A.; Matyjasek, Ł.; Karpińska, M. The Air Humidity Effect on the Detection of TNT, PETN and NG by the FAIMS Technique. Sens. Actuators B 2017, 247: 343-348; https://doi.org/10.1016/j.snb.2017.03.022.
  • [9] Eiceman, G.A.; Krylov, E.V.; Krylova, N.S.; Nazarov, E.G.; Miller, R.A. Separation of Ions from Explosives in Differential Mobility Spectrometry by Vapor-modified Drift Gas. Anal. Chem. 2004, 76(17): 4937-4944; https://doi.org/10.1021/ac035502k.
  • [10] Kolakowski, B.M.; Mester, Z. Review of Applications of High-field Asymmetric Waveform Ion Mobility Spectrometry (FAIMS) and Differential Mobility Spectrometry (DMS). Analyst 2007, 132(9): 842-864; https://doi.org/10.1039/ B706039D.
  • [11] Shvartsburg, A.A. Differential Ion Mobility Spectrometry: Nonlinear Ion Transport and Fundamentals of FAIMS. CRC Press, Boca Raton, 2009; ISBN 978-1-4200- 5106-3.
  • [12] Maziejuk, M.; Lisowski, W.; Szyposzyńska, M.; Sikora, T.; Zalewska, A. Differential Ion Mobility Spectrometry in Application to the Analysis of Gases and Vapors. Solid State Phenom. 2015, 223: 283-290; https://doi.org/10.4028/www. scientific.net/SSP.223.283.
  • [13] Pavlačka, M.; Bajerová, P.; Kortánková, K.; Bláha, J.; Zástěra, M.; Mázl, R.; Ventura, K. Analysis of Explosives Using Differential Mobility Spectrometry. Int. J. Ion Mobility Spectrom. 2016, 19(1): 31-39; https://doi.org/10.1007/s12127-016- 0190-7.
  • [14] Fabianowski, W.; Maziejuk, M.; Szyposzyńska, M.; Wiśnik-Sawka, M. Detection and Identification of VOCs Using Differential Ion Mobility Spectrometry (DMS). Molecules 2022, 27(1): 234-252; https://doi.org/10.3390/molecules27010234.
  • [15] Shuai, J.; Kim, S.; Ryu, H.; Park, J.; Lee, C.K.; Kim, G.B.; Ultra, V.U. Jr.; Yang, W. Health Risk Assessment of Volatile Organic Compounds Exposure near Daegu Dyeing Industrial Complex in South Korea. BMC Public Health 2018, 18(1) paper 528; https://doi.org/10.1186/s12889-018-5454-1.
  • [16] EPA US Volatile Organic Compounds’ Impact on Indoor Air Quality. https://www. epa.gov/indoor-air-quality-iaq/volatile-organic-compounds-impact-indoor-air-quality [accessed on 14 March 2022].
  • [17] Borsdorf, H.; Eiceman, G.A. Ion Mobility Spectrometry: Principles and Applications. Appl. Spectrosc. Rev. 2006, 41(4): 323-375; https://doi. org/10.1080/05704920600663469.
  • [18] Krylov, E.V.; Coy, S.L.; Vandermey, J.; Schneider, B.B.; Covey, T.R.; Nazarov, E.G. Selection and Generation of Waveforms for Differential Mobility Spectrometry. Rev. Sci. Instrum. 2010, 81 paper 024101; https://doi.org/10.1063/1.3284507.
  • [19] Eiceman, G.A.; Karpas, Z. Ion Mobility Spectrometry. 2nd Ed., CRC Press, Taylor & Francis Group, Boca Raton, 2005; ISBN-13: 978-0849322471
  • [20] Creaser, C.S.; Griffiths, J.R.; Bramwell, C.J.; Noreen, S.; Hill, C.A.; Paul Thomas, C.L. Ion Mobility Spectrometry: A Review. Part 1. Structural Analysis by Mobility Measurement. Analyst 2004, 129: 984-994; https://doi.org/10.1039/B404531A.
  • [21] Stach, J.; Baumbach, J.I. Ion Mobility ‒ Basic Elements and Applications. Int. J. Ion Mobil. Spec. 2002, 5: 1-21.
  • [22] Papanastasiou, D.; Wollnik, H.; Rico, G.; Tadjimukhamedov, F.; Mueller, W.; Eiceman, G.A. Differential Mobility Separation of Ions Using a Rectangular Asymmetric Waveform. J. Phys. Chem. A 2008, 112(16): 3638-3645; https://doi. org/10.1021/jp711732c.
  • [23] Borsdorf, H.; Nazarov, E.G.; Miller, R.A. Time-of-Flight Ion Mobility Spectrometry and Differential Mobility Spectrometry: A Comparative Study of Their Efficiency in the Analysis of Halogenated Compounds. Talanta 2007, 71(4): 1804-1812; 319 https://doi.org/10.1016/j.talanta.2006.08.017.
  • [24] Roetering, S.; Nazarov, E.G.; Borsdorf, H.; Weickhardt, Ch. Effect of Dopants on the Analysis of Pesticides by Averages of Differential Mobility Spectrometry with Atmospheric Pressure Photoionization. Ion Mobil. Spec. 2010, 13: 47-54.
  • [25] Menlyadiev, M.R.; Stone, J.A.; Eiceman, G.A. Tandem Differential Mobility Spectrometry with Chemical Modification of Ions. Int. J. Ion Mobil. Spec. 2012, 15: 123-130. https://doi.org/10.1007/s12127-012-0106-0.
  • [26] Moll, V.; Bocos-Bintintan, V.; Ratiu, I.A.; Ruszkiewicz, D.; Thomas, P.L.C. Control of Dopants/Modifiers in Differential Mobility Spectrometry Using a Piezoelectric Injector. Analyst 2012, 137: 1458-1465; https://doi.org/10.1039/C2AN16109E.
  • [27] Puton, J.; Nousiainen, M.; Sillanpӓӓ, M. Ion Mobility Spectrometers with Doped Gases. Talanta 2008, 76(5): 978-987; https://doi.org/10.1016/j.talanta.2008.05.031.
  • [28] Rhykerd, C.L.; Hannum, D.W.; Murray, D.W.; Parmeter, J.E. Guide for the Selection of Commercial Explosives Detection Systems for Law Enforcement Applications. NIJ Guide 100-99, U.S. Department of Justice, 1999.
  • [29] Mostak, P. Vapor and Trace Detection of Explosives. In: Vapour and Trace Detection of Explosives for Anti-Terrorism Purposes. (Krausa, M., Ed.) NATO Science Series II: Mathematics, Physics and Chemistry, 2004, pp. 23-30; https:// doi.org/10.1007/978-1-4020-2716-1_4.
  • [30] Elias, L. Swab Sampling of PETN and RDX Deposits on Various Surfaces. Proc. 4th Workshop Detection of Explosives, Ascot, Berkshire, UK, 1999.
  • [31] Filipenko, A.A.; Malkin, E.K. Study of the Effect of Ionization Conditions on the Mass Selective Distributions of the Ion Mobilities of Trotyl and Hexogen by Ion Mobility Spectrometry-tandem Mass Spectrometry. J. Anal. Chem. 2011, 66(13): 1324-1332; https://doi.org/10.1134/S106193481113003X.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d47d35cb-8542-4afc-bc21-aa0792cc4812
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.