PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A Thematic Review of Port Services and Emission Reduction Strategies Using ATLAS.ti

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The maritime industry plays a dual role as a critical driver of global trade and a significant contributor to greenhouse gas (GHG) and air pollutant emissions, posing challenges to environmental sustainability. As key nodes in the global supply chain, ports face mounting pressure to adopt greener practices. This study synthesises insights from contemporary scientific research articles, highlighting best practices, successful case studies, and obstacles in implementing emission reduction strategies and environmentally friendly port services worldwide. A two-step mixed-methods approach was utilised, combining a systematic review of literature with qualitative data analysis. The PRISMA methodology guided the selection of 27 peer-reviewed articles from the Web of Science Core Collection, spanning the period from 2015 to 2024. Subsequently, thematic coding and comprehensive analysis were conducted using Computer-Assisted Qualitative Data Analysis Software (CAQDAS) ATLAS.ti, enabling a structured synthesis of findings related to port services and emission reduction strategies. Through this analysis, three critical themes emerged as essential for enhancing environmental sustainability in port operations: innovative technologies for emission reduction, data-driven optimization for port efficiency, and policies and governance for green ports. Drivers such as financial incentives, advanced technologies, and regulatory frameworks were identified, alongside barriers like economic feasibility, technical challenges, and organisational resistance. These themes reveal the interconnected nature of sustainability efforts and the need for collaborative strategies to overcome existing obstacles. By identifying key drivers and challenges, this research offers valuable insights for advancing sustainable practices in port operations. The findings underscore the importance of aligning technological, operational, and policy-driven measures to foster environmental efficiency while mitigating emissions. This study contributes to the growing body of knowledge on sustainable port operations, providing actionable insights for stakeholders and policymakers in the maritime industry to support the transition toward greener and more efficient port practices.
Twórcy
  • Constanta Maritime University, Constanta, Romania
autor
  • Constanta Maritime University, Constanta, Romania
  • Constanta Maritime University, Constanta, Romania
  • Constanta Maritime University, Constanta, Romania
Bibliografia
  • [1] Abu Bakar, N., Bazmohammadi, N. V., & Guerrero, J. (2023). Electrification of onshore power systems in maritime transportation towards decarbonization of ports: A review of the cold ironing technology. Renewable and Sustainable Energy Reviews, 178(113243). Retrieved from https://doi.org/10.1016/j.rser.2023.113243
  • [2] Alamoush, A., Olcer, A., & Ballini, F. (2022). Port greenhouse gas emission reduction: Port and public authorities’ implementation schemes. Research in Transportation Business & Management, 43. Retrieved from https://doi.org/10.1016/j.rtbm.2021.100708
  • [3] Alves de Moura, D., & Goulart de Andrade, D. (2018). Concepts of Green Port Operations - One Kind of Self Diagnisis Method to the Port of Santos - Brazil. Independent Journal of Management & Production, 9(3). doi:10.14807/ijmp.v9i3.733
  • [4] Ballester, V., Lo-Iacono-Ferreira, V., Artacho-Ramírez, M., & Capuz-Rizo, S. (2020). The Carbon Footprint of Valencia Port: A Case Study of the Port Authority of Valencia (Spain). International Journal of Environmental Research and Public Health.
  • [5] Bjerkan, K., & Seter, H. (2019). Reviewing tools and technologies for sustainable ports: Does research enable decision making in ports? Transportation Research Part D: Transport and Environment, 72, 243–260. Retrieved from https://doi.org/10.1016/j.trd.2019.05.003
  • [6] CESI, I. (2024). New Energy Connections for a Sustainable Tomorrow. Energy Journal. Retrieved from https://www.cesi.it/app/uploads/2024/12/EJ-29-News-Energy-Connections.pdf
  • [7] Chen, J., Huang, T., Xie, X., Lee, P.-W., & Hua, C. (2019). Constructing Governance Framework of a Green and Smart Port. J. Mar. Sci. Eng.
  • [8] Di Vaio, A., & Varriale, L. (2018). Management Innovation for Environmental Sustainability in Seaports: Managerial Accounting Instruments and Training for Competitive Green Ports beyond the Regulations. Sustainability, 10(783). doi:10.3390/su10030783
  • [9] Dumitru, A., Gregorio, E., Bonnes, M., Bonaiuto, M., Carrus, G., Garcia-Mira, R., & F., M. (2016). Low carbon energy behaviors in the workplace: A qualitative study in Italy and Spain. Energy Research & Social Science, 13, 49-59. doi:doi.org/10.1016/j.erss.2015.12.005
  • [10] ETS, E. (2024). EU Emissions Trading System. Climate. Retrieved 12 30, 2024, from https://climate.ec.europa.eu/eu-action/transport/reducing-emissions-shipping-sector_en
  • [11] EU. (2019). European Green Deal. Council of the European Union. Retrieved from https://www.consilium.europa.eu/en/policies/green-deal/
  • [12] Franchi, L., & Vanelslander, T. (2021). Port Greening: Discrete Choice Analysis Investigation on Environmental Parameters Affecting Container Shipping Companies’ Behaviors. Sustainability, 13(7010). Retrieved from https://doi.org/10.3390/su13137010
  • [13] Friese, S. (2014). Qualitative Data Analysis with ATLAS.ti. SAGE Publications. doi:https://doi.org/10.4135/9781529799590.n1
  • [14] Gan, G., Lee, H., Tao, Y., & Tu, C. (2021). Selecting Suitable, Green Port Crane Equipment for International Commercial Ports. Sustainability, 13(6801). Retrieved from https://doi.org/10.3390/su13126801
  • [15] Haddaway, N. R., Page, M. J., Pritchard, C. C., & McGuinness, L. A. (2022). PRISMA2020: An R package and Shiny app for producing PRISMA 2020-compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews, 18(2). doi:https://doi.org/10.1002/cl2.1230
  • [16] Huang, J., & Duan, X. (2023). A comprehensive review of emission reduction technologies for marine transportation. J. Renew. Sustain. Energy, 15(032702).
  • [17] IMO. (2023). 2023 IMO Strategy on Reduction of GHG Emissions from Ships. Marine Environment. Retrieved from https://www.imo.org/en/OurWork/Environment/Pages/2023-IMO-Strategy-on-Reduction-of-GHG-Emissions-from-Ships.aspx
  • [18] IPCC, C. (2019). Transport. The Intergovernmental Panel on Climate Change. Retrieved from https://www.ipcc.ch/report/ar6/wg3/chapter/chapter-10/
  • [19] Kizielewicz, J. (2022). Monitoring Energy Efficiency and Environmental Ship Index by Cruise Seaports in Northern Europe. Energies, 15(4215). Retrieved from https://doi.org/10.3390/en15124215
  • [20] Kotowska, I., Mankowska, M., & Plucinski, M. (2018). Inland Shipping to Serve the Hinterland: The Challenge for Seaport Authorities. Sustainability, 10(3468). doi:doi:10.3390/su10103468
  • [21] Le, S.-T., & Nguyen, T.-H. (2023). The Development of Green Ports in Emerging Nations: A Case Study of Vietnam. Sustainability, 15(13502). Retrieved from https://doi.org/10.3390/su151813502
  • [22] Le, T., Nguyen, H., Rudzki, K., Rowiński, L., Bui, V., Truong, T., . . . Pham, N. (2023). Management strategy for seaports aspiring to green logistical goals of IMO: Technology and policy solutions. POLISH MARITIME RESEARCH, 30(118), 165-187. doi:10.2478/pomr-2023-0031
  • [23] Lee, H., Park, D., Choo, S., & Pham, T. (2020). Estimation of the Non-Greenhouse Gas Emissions Inventory from Ships in the Port of Incheon. Sustainability, 12. doi:doi:10.3390/su12198231
  • [24] Lee, H., Pham, H., Chen, M., & Choo, S. (2021). Bottom-Up Approach Ship Emission Inventory in Port of Incheon Based on VTS Data. Journal of Advanced Transportation, 2021. Retrieved from https://doi.org/10.1155/2021/5568777
  • [25] Li, J., Ren, J., Ma, X., & Xiao, G. (2023). Environmental efficiency of ports under the dual carbon goals: Taking China’s Bohai-rim ports as an example. Frontiers in Marine Science. doi:10.3389/fmars.2023.1129659
  • [26] Lin, C.-Y., Dai, G.-L., Wang, S., & Fu, X.-M. (2022). The Evolution of Green Port Research: A Knowledge Mapping Analysis. Sustainability, 14(19). doi:https://doi.org/10.3390/su141911857
  • [27] Lu, H., & Huang, L. (2021). Optimization of Shore Power Deployment in Green Ports Considering Government Subsidies. Sustainability, 13. Retrieved from https://doi.org/10.3390/su13041640
  • [28] Méndez Romero, R. (2016). Qualitative data analysis with ATLAS.ti [Book Review]. Qualitative Research in Education, 5(2), 226-228. doi:10.17583.qre.2016.2120
  • [29] Misra, A. P. (2017). GHG emission accounting and mitigation strategies to reduce the carbon footprint in conventional port activities: A case of the Port of Chennai. Carbon Management, 8(1), 45-56. doi:10.1080/17583004.2016.1275815
  • [30] Misra, A., Tajudeen, S., Venkataramani, G., Ayyasamy, E., & Ramalingam, V. (2017). Role of biodiesel with nanoadditives in port owned trucks and other vehicles for emission reduction. THERMAL SCIENCE, 21(1B), 605-614. doi:10.2298/TSCI160613295M
  • [31] Mocerino, L., Murena, F., Quaranta, F., & Toscano, D. (2024). Port Emissions Assessment: Integrating Emission Measurements and AIS Data for Comprehensive Analysis. Atmosphere, 15(446). Retrieved from https://doi.org/10.3390/atmos15040446
  • [32] Moshood, T. N., Mahmud, F., Sorooshian, S., & Adeleke, A. (2021). Green and low carbon matters: A systematic review of the past, today, and future on sustainability supply chain management practices among manufacturing industry. Cleaner Engineering and Technology, 4. doi:https://doi.org/10.1016/j.clet.2021.100144
  • [33] Paulus, T., & Lester, J. (2015). ATLAS.ti for conversation and discourse analysis studies. International Journal of Social Research Methodology, 19(4), 405–428. doi:https://doi.org/10.1080/13645579.2015.1021949
  • [34] Peng, Y., Wang, W., Liu, K., Li, X., & Tian, Q. (2018). The Impact of the Allocation of Facilities on Reducing Carbon Emissions from a Green Container Terminal Perspective. Sustainability, 10(1813). doi:doi:10.3390/su10061813
  • [35] Perron, P. (2006). Dealing with structural breaks. Palgrave Handbook of Econometrics, 1, 278–352.
  • [36] Pgs-Log. (2019). China’s Guiding Opinions on Building World-Class Ports. Parisi Grand Smooth. Retrieved from https://pgs-log.com/china-releases-guidelines-to-build-world-class-ports/
  • [37] Port-Data. (2024). The Future of Digital Port Operations: Trends, Innovations, and Challenges. Retrieved 12 30, 2024, from https://www.port-data.com/post/the-future-of-digital-port-operations-trends-innovations-and-challenges
  • [38] PortSeattle. (2021). Northwest Ports Clean Air Strategy. Retrieved from https://www.nwseaportalliance.com/environment/clean-air/northwest-ports-clean-air-strategy
  • [39] Roh, S., Thai, V., & Wong, Y. (2016). Towards Sustainable ASEAN Port Development: Challenges and Opportunities for Vietnamese Ports. The Asian Journal of Shipping and Logistics, 32(2), 107-118. Retrieved from http://dx.doi.org/10.1016/j.ajsl.2016.05.004
  • [40] Silver, C., & Lewins, A. (2014). Using Software in Qualitative Research : A Step-by-Step Guide. Sage Publications.
  • [41] Song, D. (2024). A Literature Review of Seaport Decarbonisation: Solution Measures and Roadmap to Net Zero. Sustainability, 16(4). Retrieved from https://doi.org/10.3390/su16041620
  • [42] Song, Z., Tang, W., Zhao, R., & Zhang, G. (2022). Implications of government subsidies on shipping companies’ shore power usage strategies in port. Transportation Research Part E: Logistics and Transportation Review, 165. Retrieved from https://doi.org/10.1016/j.tre.2022.102840
  • [43] Soratto, J., Pires, D., & Friese, S. (2020). Thematic content analysis using ATLAS.ti software: potentialities for researchs in health. Revista Brasileira de Enfermagem, 73. doi:https://doi.org/10.1590/0034-7167-2019-0250
  • [44] Standard, A., Sabisch, M., Kishan, S., & Fulper, C. (2018). Measurement and Analysis of the Operations of Drayage Trucks in the Houston Area in Terms of Activities and Exhaust Emissions. SAE Int J Commer Veh., 11(2), 77–92. doi:doi:10.4271/02-11-02-0007
  • [45] Tai, H., & Chang, Y.-H. (2022). Reducing pollutant emissions from vessel maneuvering in port areas. Maritime Economics & Logistics, 24, 651–671. Retrieved from https://doi.org/10.1057/s41278-022-00218-w
  • [46] Tseng, P., & Ng, M. (2021). Assessment of port environmental protection in Taiwan. Maritime Business Review, 6(2), 2397-3757. doi:10.1108/MABR-04-2020-0022
  • [47] Tseng, P.-H., & Pilcher, N. (2019). Evaluating the key factors of green port policies in Taiwan through quantitative and qualitative approaches. Transport Policy. Retrieved from https://doi.org/10.1016/j.tranpol.2018.12.014
  • [48] UNCTAD. (2023). Towards greener shores: The need for an energy transition. Review of Maritime Transport. Retrieved from https://unctad.org/publication/review-maritime-transport-2023
  • [49] Wan, C., Zhang, D., Yan, X., & Yang, Z. (2017). A novel model for the quantitative evaluation of green port development - A case study of major ports in China. Transportation Research Part D: Transport and Environment. Retrieved from http://researchonline.ljmu.ac.uk/id/eprint/6877/
  • [50] Wang, B., Liu, Q., Wang, L., Chen, Y., & Wang, J. (2023). A review of the port carbon emission sources and related emission reduction technical measures? Environ. Pollut. 2023, 320, 121000. Environmental Pollution, 320. Retrieved from https://doi.org/10.1016/j.envpol.2023.121000
  • [51] WPCI. (2018). World Port Climate Initiative. World Ports Sustainability Program. Retrieved from https://sdgs.un.org/partnerships/world-ports-sustainability-program
  • [52] Xiao, G., Wang, Y., Wu, R., Li, J., & Cai, Z. (2024). Sustainable Maritime Transport: A Review of Intelligent Shipping Technology and Green Port Construction Applications. Journal of Marine Science and Engineering, 12. doi:https://doi.org/10.3390/jmse12101728
  • [53] Yoo, Y., Moon, B., & Kim, T.-G. (2022). Estimation of Pollutant Emissions and Environmental Costs Caused by Ships at Port: A Case Study of Busan Port. J. Mar. Sci. Eng., 10(4). Retrieved from https://doi.org/10.3390/jmse10050648
  • [54] Zhuge, D. W. (2021). Subsidy design in a vessel speed reduction incentive program under government policies. Naval Research Logistics, 68, 344– 358. Retrieved from https://doi.org/10.1002/nav.21948
Uwagi
Pełne imiona podano na stronie internetowej czasopisma w "Authors in other databases."
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d478a2eb-6638-44e6-b38b-0debb5f577c4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.