PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dilemmas of social life algorithmization - technological proof of equity

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Purpose: The aim of the article is to describe and forecast possible dilemmas related to the development of cognitive technologies and the progressing process of algorithmization of social life. Design/methodology/approach: Most of the current studies related to the Big Data phenomenon concern the level of efficiency improvement the algorithmic tools or protection against autonomization of machines, in this analysis a different perspective is proposed, namely - thoughtless way of using data-driven instruments, termed technological proof of equity. This study is to try to anticipate possible difficulties connected with algorithmization, which understanding could help to "prepare" or even eliminate the harmful effects we may face which will affect decisions made in the field of the social organization and managing organizations or cities etc. Findings: The proposed point of view may contribute to a more informed use of cognitive technologies, machine learning, artificial intelligence and an understanding of their impact on social life, especially unintended consequences. Social implications: The article can have an educational function, helps to develop critical thinking about cognitive technologies and directs attention to areas of knowledge by which future skills should be extended. Originality/value: The article is addressed to data scientist and all those who use algorithms and data-driven decision-making processes in their actions. Crucial in this considerations is the introduction the concept of technological proof of equity, which helps to "call" the real threat of the appearance of technologically grounded heuristic thinking and it’s social consequences.
Rocznik
Tom
Strony
525--538
Opis fizyczny
Bibliogr. 52 poz.
Twórcy
  • Silesian University of Technology, Zabrze
Bibliografia
  • 1. Aronson E. et al. (2014). Pearson New International Edition. Social Psychology. London: Pearson.
  • 2. Bakhshi H. et al. (2017). The Future of the Skills. Employment in 2030. London: Pearson and Nesta.
  • 3. Bannister, C., Golden, D. (2020). Ethical Technology and Trust. In Tech Trends 2020, Deloitte Development LLC, pp. 23-41.
  • 4. Bostrom, N. (2016). Superinteligencja. Scenariusze, strategie, zagrożenia. Gliwice: Helion.
  • 5. Braden, G. (2014). The Turning Point. Creating Resilience in Time of Extremes. Carlsbad- New York-London: Hay House.
  • 6. Bridle, J. (2019). New Dark Age: technology and the End of Future. London-New York: Verso.
  • 7. Brown, R., Whittle, R. (2020). Algorithms, blockchains, cryptocurrency: Implications for the Future of the Workplace. Bingley: Emerald Publishing Limited.
  • 8. Brynjolfsson, E., Mcafee, A. (2014). The Second Machine Age. Work. Progress, and Prosperity in a Time of Brillant Technologies. New York-London: W.W. Norton & Company.
  • 9. Cialdini, R. (2007). Influence: the Psychology of Persuasion. New York: HarperCollins.
  • 10. Dijck, J. (2014). Datafiction, dataism and dataveillance: Big Data between scientific paradigm and secular belief. Surveillance & Society, 12(2), p. 197-208, Retrieved from: https://dare.uva.nl/search?identifier=eae3e10f-6cad-440b-8b0e-f623b9bdda9f.
  • 11. Domingos P. (2015). Master Algorithm: How the Quest for the Ultimate Learning Machine will Remake Our World. New York: Basic Books.
  • 12. Ford, M. (2016). Świt robotów. Czy sztuczna inteligencja pozbawi nas pracy. Warszawa: Ccdp.pl.
  • 13. Galliers, R.D. et al. (2017). Datafication and its human, organizational and societal effects: The strategic opportunities and challenges of algorithmic decision-making. Journal of Strategic Information System, 26, pp. 185-190.
  • 14. Gębska, M. (2020). Big Data in the Modern Farm Management. In: J. Paliszkiewicz (Ed.), Management in the era of Big Data: Issues and Challenges (pp. 97-114). London-New York: Taylor & Francis Group.
  • 15. Gitelman, L., Jackson, V. (2013). Introduction. In: L. Gitelman (Ed.), Raw Data. Is an Oxymoron (pp. 1-14). Cambridge: MIT Press.
  • 16. Han, J., Kamber, M., Pei, J. (2012). Data Mining: Concepts and Techniques. Amsterdam- Boston-Heidelberg-London-New York-Oxford-Paris-San Diego-San Francisco-Singapore- Sydney-Tokyo: Elsevier.
  • 17. Harari, Y.N. (2017). Homo Deus: A Brief History of Tomorrow. Sydney-Toronto- Auckland-London-New York: HarperCollins (e-book).
  • 18. Harari, Y.N. (2018). 21 Lessons for the 21st Century. London: Jonatan Cape.
  • 19. Jonek-Kowalska, I., Kaźmierczak, J., Kramarz, M., Hilarowicz, A., Wolny, M. (2018). Introduction To The Research Project Smart City: A Holistic Approach. Retrieved from: https://www.sgemsocial.org/index.php/jresearch-article?citekey=Jonek- Kowalska201819101112.
  • 20. Jones, M. (2019). What we talk about when we talk about (big) data. Journal of Strategic Information Systems, 28, pp. 3-16.
  • 21. Jucevicius, G., Grumadaite, K. (2014). Smart development if innovation ecosystem. Procedia - Socila and Behavioral Sciences, 154, pp. 125-129.
  • 22. Kagerman H. et al. (2013). Recommendation for implementing the strategic initiative Industrie 4.0. Final report of the Industrie 4.0 Working Group. Retrieved from: https://www.din.de/blob/76902/e8cac883f42bf28536e7e8165993f1fd/recommendations- for-implementing-industry-4-0-data.pdf.
  • 23. Kahneman, D. (2011). Thinking Fast and Slow. New York: Farrar, Straus and Giroux.
  • 24. Kenrick D. et al. (2014). Social Psychology: Goals in Interaction. London: Pearson Education.
  • 25. Kleppman, M. (2017). Designing Data-Intensive Applications: The Big Ideas Behind Reliable, Scalable and Maintainable Systems. Beijng-Boston-Farnham-Sebastopol-Tokyo: O’REILLY.
  • 26. Kumar, P.M. et al. (2019). Intelligent face recognition and navigation system using neural learning for smart security in Internet of Things. Cluster Computing, 22, pp. 7733-7744.
  • 27. Kummitha, R.K.R. (2019). Smart cities and entrepreneurship: An agenda for future research. Technological Forecasting & Social Change, 149, pp. 1-10.
  • 28. Kurzweil, R. (2016). Nadchodzi osobliwość. Kiedy człowiek przekroczy granice biologii. Warszawa: KURHAUS Publishing.
  • 29. Kuzior, A. et al. (2019). Sustainable Development of Organizations Based on The Combinatorial Model of Artificial Intelligence. Entrepreneurship and Sustainably Issues, 7(2), pp. 1353-1376.
  • 30. Kwiliński, A. et al. (2019). Transparent cognitive technologies to ensure sustainable society development. Journal of Security and Sustainability Issues, 9(2), pp. 561-570. DOI: 10.9770/jssi.2019.9.2(15).
  • 31. Leopold, A.T. et al. (2018). The Future of Jobs Report 2018. Geneva: World Economic Forum.
  • 32. Mayer-Schonberger, V., Cukier, K. (2014) Big data. Rewolucja, która zmieni nasze myślenie, pracę i życie. Warszawa: MT Biznes (e-book).
  • 33. Morrar, R. et al. (2017). The Fourth Industrial Revolution (Industry 4.0): A Social Innovation Perspective. Technology Innovation Management Review, 7/11, pp. 12-20.
  • 34. Osika, G. (2015). Hiperczytanie jako struktura poznawcza. Lingua ac Communitas, vol. 25, pp. 63-78.
  • 35. Osika, G. (2017). Czekając na osobliwość. O Modelach interpretacji techniki. Filo-Sofija. Z problemów Współczesnej Filozofii. Człowiek i maszyna, 391/1, pp. 65-78.
  • 36. Osika, G. (2019a). Algorytmiczne narzędzia analizy zawartości mediów. Metametodologiczne refleksje. In: I. Hofman, D. Kępa-Figura (eds.), Współczesne media. Problemy i metody badań nad mediami, tom 2 (pp. 181-194). Lublin: Wydawnictwo UMCS.
  • 37. Osika, G. (2019b). On Hoping for Hope: The Search for homo esperans. Ethos, 32, no. 4(128), pp. 135-153. DOI 10.12887/32-2019-4-128-08.
  • 38. Osika, G. (2019c). Social Innovation as Support for Industry 4.0. Scientific Papers of Silesian University of Technology, Organization and Management Series, no. 141, pp. 289-301.
  • 39. Piccarozzi, M., Aquilani, B., Gatti, C. (2018). Industry 4.0 in management Studies: A Systematic Literature Review. Sustinability, 10, 3821, https://www.mdpi.com/journal/ sustainability, 3.07.2020. DOI:103390/su10103821.
  • 40. Rudder, Ch. (2014). Dataclysm. Love, Sex, Race, and Identity. Who we are (When We Think No one’s Looking). New York: Crown.
  • 41. Schwab, K. (2016). The Fourth Industrial Revolution. Cologny-Geneva: World Economic Forum, Retrieved from: https://luminariaz.files.wordpress.com/2017/11/the-fourth-industrial-revolution-2016-21.pdf.
  • 42. Śledziewska, K., Włoch, R. (2020). Gospodarka cyfrowa. Jak nowe technologie zmieniają świat. Warszawa: Wydawnictwo Uniwersytetu Warszawskiego.
  • 43. Smith, B., Shum, H. (2018). Foreword. The Future Computed: Artificial Intelligence and its role in society. Redmond-Washington: Microsoft Corporation.
  • 44. Strittmatter, K. (2018). Chiny 5.0. Nowe oblicze dyktatury. Warszawa: Grupa Wydawnicza Foksal, MMXX.
  • 45. Surma, J. (2017). Cyfryzacja życia w erze big data. Człowiek. Biznes. Państwo. Warszawa: PWN.
  • 46. Szpunar, M. (2019). Kultura algorytmów. Kraków: Wydawnictwo ToC.
  • 47. Tian, S. et al. (2019). Smart healthcare: making medical care more intelligent. Global Health Journal, 3, pp. 62-65.
  • 48. Translatorzy, datanauci i samuraje danych (2018). Digital & More. Retrieved from https://digitalandmore.pl/translatorzy-datanauci-i-samuraje-danych/.
  • 49. Volinim E. et al. (2019). Global Human Capital Trends 2019 Deloitte, New York: Deloitte Insights (pdf).
  • 50. Wąs, A. et al. (2020). Use of Big Data for Assessment of Environmental Pressures from Agriculture Production. In: J. Paliszkiewicz (Ed.), Management in the era of Big Data: Issues and Challenges (pp. 137-152). London-New York: Taylor & Francis Group.
  • 51. Yin, S. and Kaynak, O. (2015). Big Data for Modern Industry: Challenges and Trends. Proceedings of The IEEE, Vol. 103, No. 2, pp. 143-146.
  • 52. Zysman, J., and Kenney, M. (2018). The Next Phase in the Digital Revolution: Intelligent Tools, Platforms. Growth, Employment, Communication of The ACM, 61, pp. 54-63.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4726d72-99b6-4d8e-b51b-b733199d81eb
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.