Identyfikatory
DOI
Warianty tytułu
Języki publikacji
Abstrakty
In this paper the influence of high power airborne ultrasound on drying biological material (Lobo apple) properties is considered. Apple samples were dried convectively at 75 ◦C and air flow of 2 m/s with and without ultrasound assist at 200W. During experiments, sun-drenched and not sun-drenched part of fruits were considered separately to show, how the maturity of the product influences dry material properties. Dried apple crisps in a size of small bars were subjected to compression tests during which acoustic emission (AE) was used. Analysis of AE and strength test results shows that correlations between received acoustic signals and sensory attributes (crispness, brittleness) of dried apples can be found. It was noted that ultrasound improved fruit brittleness in comparison with pure convective processes, where fruit maturity determines a kind of destruction and behaviour of dried apple crisps.
Czasopismo
Rocznik
Tom
Strony
263–--270
Opis fizyczny
Bibliogr. 12 poz., rys.
Twórcy
autor
- Poznań University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
autor
- Poznań University of Technology, Institute of Technology and Chemical Engineering, Department of Process Engineering, ul. Berdychowo 4, 60-965 Poznań, Poland
Bibliografia
- 1. Carsanba E., Duerrschmid K., Schleining G., 2018. Assesment of acoustic-mechanical measurements for crispness of wafer products. J. Food Eng., 229, 93–101. DOI: 10.1016/j.jfoodeng.2017.11.006.
- 2. Chou S.K., Chua K.J., 2001. New hybrid drying technologies for heat sensitive foodstuffs. Trends Food Sci. Tech., 12, 359–369. DOI: 10.1016/S0924-2244(01)00102-9.
- 3. Chua K.J., 2013. Emerging hybrid drying technologies for food products. Stewart Postharvest Rev., 9, 1–10. DOI: 10.2212/spr.2013.2.5.
- 4. Fabiano F.A.N., Rodrigues S., Cárcel J.A., García-Pérez J.V., 2015. Ultrasound-assisted air-drying of apple (Malus domestica L.) and its effects on the vitamin of the dried product. Food Bioprocess Technol., 8, 1503–1511. DOI: 10.1007/s11947-015-1519-7.
- 5. Gamboa-Santos J., Montilla A., Cárcel J.A., Villamiel M., Garcia-Perez J.V., 2014. Air-borne ultrasound application in the convective drying of strawberry. J. Food Eng., 128, 132–139. DOI: 10.1016/j.jfoodeng.2013.12.021.
- 6. Gregersen S.B., Povey M.J.W., Kidmose U., Andersen M.D., Hammershoj M., Wiking L., 2015. Identification of important mechanical and acoustic parameters for the sensory quality of cocoa butter alternatives. Food Res. Int., 76, 637–644. DOI: 10.1016/j.foodres.2015.07.022.
- 7. Kowalski S.J., Pawłowski A., 2015. Intensification of apple drying due to ultrasound enhancement. J. Food Eng., 156, 1–9. DOI: 10.1016/j.jfoodeng.2015.01.023.
- 8. Piazza L., Giovenzana V., 2015. Instrumental acoustic-mechanical measures of crispness in apples. Food Res. Int., 69, 209–2015. DOI: 10.1016/j.foodres.2014.12.041.
- 9. Rodrigues S., Gomes M.C.F., Gall˘ao M.I., Fernandes F.A.N., 2009. Effect of ultrasound-assisted osmotic dehydration on cell structure of sapotas. J. Sci. Food Agr., 89, 665–670. DOI: 10.1002/jsfa.3498.
- 10. Sabarez H.T., Gallego-Juarez J.A., Riera E., 2012. Ultrasonic-assisted convective drying of apple slices. Dry. Technol., 30, 989–997. DOI: 10.1080/07373937.2012.677083.
- 11. Shamaei S., Emam-Djomeh Z., Moini S., 2012. Modeling and optimization of ultrasound assisted osmotic dehydration of cranberry using response surface methodology. J. Agr. Sci. Tech., 14 (SUPPL.), 1523–1534.
- 12. Zdunek A., Konopacja D., Jesionkowska K., 2010. Crispness and crunchiness judgment of apples based on contact acoustic emission. J. Texture Stud., 41, 75–91. DOI: 10.1111/j.1745-4603.2009.00214.x.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d46d8698-694c-4a5a-af4d-5c49ee92a774