Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This paper studies downlink cellular networks relying on non-orthogonal multiple access (NOMA). Specifically, the access point (AP) is able to harvest wireless power from the power beacon (PB). In the context of an AP facilitated with multiple antennas, the transmit antenna selection procedure is performed to process the downlink signal, with the transmission guaranteed by energy harvesting. Therefore, a wireless power transfer-based network is introduced to overcome power outages at the AP. In particular, an energy-constrained AP harvests energy from the radio frequency signals transmitted by the PB in order to assist in transmitting user data. Outage performance and ergodic capacity are evaluated with the use of closed-form expressions. In order to highlight some insights, approximate computations are provided. Finally, numerical simulations are performed to confirm the benefits of combining the downlink NOMA transmission and the transmit power scheme at the AP in order to serve a multitude of users.
Słowa kluczowe
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
- Faculty of Electronics Technology, Industrial University of Ho Chi Minh City, Ho Chi Minh City, Vietnam
autor
- Innovation Center Van Lang University Ho Chi Minh City Vietnam
Bibliografia
- [1] Q. C. Li, H. Niu, A. T. Papathanassiou, and G. Wu, „5G network capacity: Key elements and technologies", IEEE Vehicular Technol. Mag., vol. 9, no. 1, pp. 71-78, 2014 (DOI: 10.1109/MVT.2013.2295070).
- [2] Y. Saito, A. Benjebbour, Y. Kishiyama, and T. Nakamura, „System level performance evaluation of downlink non-orthogonal multiple access (NOMA)", in Proc. IEEE 24th Annual Int. Symp. on Personal, Indoor, and Mobile Radio Commun. (PIMRC), London, UK, 2013, pp. 611-615 (DOI: 10.1109/PIMRC.2013.6666209).
- [3] D.-T. Do, A.-T. Le, C.-B. Le, and B. M. Lee, „On exact outage and throughput performance of cognitive radio based non-orthogonal multiple access networks with and without D2D link", Sensors, vol. 19, no. 15, pp. 3314, 2019 (DOI: 10.3390/s19153314).
- [4] D.-T. Do and M.-S. Van Nguyen, „Device-to-device transmission modes in NOMA network with and without wireless power transfer", Computer Commun., vol. 139, pp. 67-77, 2019 (DOI: 10.1016/j.comcom.2019.04.003).
- [5] Z. Ding, P. Fan, and H. V. Poor, „Impact of user pairing on 5G nonorthogonal multiple-access downlink transmissions", IEEE Trans. Veh. Technol, vol. 65, no. 8, pp. 6010-6023, 2016 (DOI: 10.1109/TVT.2015.2480766).
- [6] M. F. Hanif, Z. Ding, T. Ratnarajah, and G. K. Karagiannidis, „A minorization-maximization method for optimizing sum rate in the downlink of non-orthogonal multiple access systems", IEEE Trans. Signal Process, vol. 64, no. 1, pp. 76-88, 2016 (DOI: 10.1109/TSP.2015.2480042).
- [7] D.-T. Do, M. Vaezi, and T.-L. Nguyen, „Wireless powered cooperative relaying using NOMA with imperfect CSI", in Proc. of IEEE Globecom Workshops, Abu Dhabi, UAE, pp. 1-6, 2018 (DOI: 10.1109/GLOCOMW.2018.8644154).
- [8] D.-T. Do and A.-T. Le, „NOMA based cognitive relaying: Transceiver hardware impairments, relay selection policies and outage performance comparison", Computer Commun., vol. 146, pp. 144-154, 2019 (DOI: 10.1016/j.comcom.2019.07.023).
- [9] D.-T. Do, A.-T. Le, and B.-M. Lee, „On performance analysis of underlay cognitive radio-aware hybrid OMA/NOMA networks with imperfect CSI", Electronics, vol. 8, no. 7, pp. 819, 2019 (DOI: 10.3390/electronics8070819).
- [10] P.-M. Nam, D.-T. Do, T.-T. Nguyen, and P. T. Tin, „Energy harvesting assisted cognitive radio: random location-based transceivers scheme and performance analysis", Telecommun. Systems, vol. 67, no. 1, pp. 123-132, 2018 (DOI: 10.1007/s11235-017-0325-0).
- [11] T.-L. Nguyen and Dinh-Thuan Do, „Exploiting impacts of intercell interference on SWIPT-assisted non-orthogonal multiple access", Wireless Commun. and Mobile Comput., vol. 2018, 2018 (DOI: 10.1155/2018/2525492).
- [12] D.-T. Do, M.-S. Van Nguyen, T.-A. Hoang, and M. Voznak, „NOMA-assisted multiple access scheme for IoT deployment: Relay selection model and secrecy performance improvement, Sensors, vol. 19, no. 3, pp. 736, 2019 (DOI: 10.3390/s19030736).
- [13] D.-T. Do, „Energy-aware two-way relaying networks under imperfect hardware: optimal throughput design and analysis", Telecommun. Systems, vol. 62, no. 2, pp. 449-459, 2016 (DOI: 10.1007/s11235-015-0085-7).
- [14] X. Li et al., „Effective rate of MISO systems over κ- μ shadowed fading channels", in IEEE Access, vol. 5, pp. 10605-10611, 2017 (DOI: 10.1109/ACCESS.2017.2705018).
- [15] X. Yue et al., „Exploiting full/half-duplex user relaying in NOMA systems", IEEE Trans. Commun., vol. 66, no. 2, pp. 560-575, 2018 (DOI: 10.1109/TCOMM.2017.2749400).
- [16] D.-T. Do, C.-B. Le, and F. Afghah, „Enabling full-duplex and Energy harvesting in uplink and downlink of small-cell network relying on power domain based multiple access", IEEE Access, vol. 8, pp. 142772-142784, 2020 (DOI: 10.1109/ACCESS.2020.3013912).
- [17] X. Li, J. Li, Y. Liu, Z. Ding, and A. Nallanathan, „Residual transceiver hardware impairments on cooperative NOMA networks", IEEE Transac. on Wireless Commun., vol. 19, no. 1, pp. 680-695, 2020 (DOI: 10.1109/TWC.2019.2947670).
- [18] X. Li, J. Li, and L. Li, „Performance analysis of impaired SWIPT NOMA relaying networks over imperfect Weibull channels", in IEEE Systems J., vol. 14, no. 1, 2020, pp. 669-672 (DOI: 10.1109/JSYST.2019.2919654).
- [19] X. Li, M. Liu, C. Deng, P. T. Mathiopoulos, Z. Ding, and Y. Liu, „Full-duplex cooperative NOMA relaying systems with I/Q imbalance and imperfect SIC", IEEE Wireless Commun. Letters, vol. 9, no. 1, pp. 17-20, 2020 (DOI: 10.1109/LWC.2019.2939309).
- [20] Xingwang Li et al., „A unified framework for HS-UAV NOMA network: performance analysis and location optimization", IEEE Access, vol. 8, pp. 13329-13340, 2020 (DOI: 10.1109/ACCESS.2020.2964730).
- [21] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series and Products, 6th ed. New York, NY, USA: Academic Press, 2000 (ISBN: 9780080542225).
- [22] C.-B. Le and D.-T. Do, „On outage performance of backscatter NOMA relaying systems equipping with multiple antennas", Electronics Letters, vol. 55, no. 19, pp. 1066-1067, 2019 (DOI: 10.1049/el.2019.1390).
- [23] A. A. Nasir, X. Zhou, S. Durrani, and R. A. Kennedy, „Relaying protocols for wireless energy harvesting and information processing", IEEE Transac. on Wireless Commun., vol. 12, no. 7, pp. 3622-3636, 2013 (DOI: 10.1109/TWC.2013.062413.122042).
- [24] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, NY, USA: Dover, 1972 (ISBN: 9780486612720)
- [25] P. Yan, J. Yang, M. Liu, J. Sun, and G. Gui, „Secrecy outage analysis of transmit antenna selection assisted with wireless power beacon", IEEE Transac. on Vehicular Technol., vol. 69, no. 7, pp. 7473-7482, 2020 (DOI: 10.1109/TVT.2020.2992766).
- [26] X. Wang, M. Jia, I. W.-H. Ho, Q. Guo, and F. C. M. Lau, „Exploiting fullduplex two-way relay cooperative non-orthogonal multiple access", IEEE Transac. Commun., vol. 67, no. 4, pp. 2716-2729, 2019 (DOI: 10.1109/TCOMM.2018.2890264).
- [27] T.-L. Nguyenÿ C.-B. Le, and D.-T. Do. „Performance analysis of multi-user NOMA over a κ- μ shadowed fading", Electronics Letters, vol. 56, no. 15, pp. 771-773, 2020 (DOI: 10.1049/el.2019.4265).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d466915a-4cfc-406b-bd72-02fcec5befd1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.