Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
According to the Google I/O 2018 key notes, in future artificial intelligence, which also includes machine learning and deep learning, will mostly evolve in healthcare domain. As there are lots of subdomains which come under the category of healthcare domain, the proposed paper concentrates on one such domain, that is breast cancer and pneumonia. Today, just classifying the diseases is not enough. The system should also be able to classify a particular patient’s disease. Thus, this paper shines the light on the importance of multi spectral classification which means the collection of several monochrome images of the same scene. It can be proved to be an important process in the healthcare areas to know if a patient is suffering from a specific disease or not. The convolutional layer followed by the pooling layer is used for the feature extraction process and for the classification process; fully connected layers followed by the regression layer are used.
Rocznik
Tom
Strony
1--9
Opis fizyczny
Bibliogr. 28 poz., rys., tab.
Twórcy
autor
- School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India
autor
- Electronics & Computer Discipline, Indian Institute of Technology, Roorkee, India
autor
- School of Computer Science, University of Petroleum & Energy Studies, Dehradun, India
autor
- Electronics & Computer Discipline, Indian Institute of Technology, Roorkee, India
Bibliografia
- [1] Mayo Clinic Patient Care and Health Information. Pneumonia. https://www.mayoclinic.org/diseasesconditions/pneumonia/symptoms-causes/syc-20354204
- [2] Micalizzi DS, Maheswaran S. On the trail of invasive cells in breast cancer. Nature. 2018;554:308-309.
- [3] Mayo Clinic Patient Care and Health Information. Breast Cancer. https://www.mayoclinic.org/diseases-conditions/breastcancer/symptoms-causes/syc-20352470
- [4] LeCun Y, Bengio Y. Convolutional Networks for Images, Speech and Time-Series. in: The handbook of brain theory and neural networks. MIT Press Cambridge; 1998.
- [5] Kakde A, Arora A, Sharma D. Novel Approach towards Optimal Classification using Multilayer Perceptron. Int J Res Eng IC Soc Sci. 2018;8(10):29-38.
- [6] Clevert DA, Unterthiner T, Hochreiter S. Fast and Accurate Deep Network Learning Exponential Linear Units (ELUs). International Conference on Learning Representations; 2016.
- [7] Krizhevsky A, Sutskever I, Hinton GE. ImageNet Classification with Deep Convolutional Neural Networks. NIPS'12 Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1. 2012. pp. 1097-1105.
- [8] Ramchoun H, Idrissi MAJ, Ghanou Y, Ettaouil M. Multilayer Perceptron: Architecture Optimization and Training. IJIMAI. 2016;4(1):26-30.
- [9] Gu J, Wang Z, Kuen J, et al. Recent advances in convolutional neural networks. Pattern Recognition. 2018;77:354-377.
- [10] Pedamonti D. Comparison of non-linear activation functions for deep neural networks on MNIST classification task. ArXiv. 2018;abs/1804.02763.
- [11] Kamilaris A, Prenafeta-Boldú FX. Deep Learning in Agriculture: A Survey. Computers and Electronics in Agriculture. 2018;147:70-90.
- [12] Fakoor F, Ladhak F, Nazi A, Huber M. Using deep learning to enhance cancer diagnosis and classification. ICML Workshop on the Role of Machine Learning in Transforming Healthcare; 2013.
- [13] Mills KI, Kohlmann, A, Williams PM, et al. Microarray-based classifiers and prognosis models identify subgroups with distinct clinical outcomes and high risk of aml transformation of myelodysplastic syndrome. Blood. 2009;114(5):1063-1072.
- [14] Fujiwara T, Hiramatsu M, Isagawa T, et al. ASCL1-coexpression profiling but no single gene expression profiling defines lung adenocarcinomas of neuroendocrine nature with poor prognosis. Lung Cancer. 2012;75(1):119-125.
- [15] Woodward WA, Krishnamurthy S, Yamauchi H, et al. Genomic and expression analysis of microdissected inflammatory breast cancer. Breast Cancer Res Treat. 2013;138(3):761-772.
- [16] Klein HU, Ruckert C, Kohlmann A, et al. Quantitative comparison of microarray experiments with published leukemia related gene expression signatures. BMC Bioinformatics. 2009;10:422.
- [17] Cheok MH, Yang W, Pui CH, et al. Treatment-specific changes in gene expression discriminate in vivo drug response in human leukemia cells. Nat Genet. 2003;34(1):85-90.
- [18] Yagi T, Morimoto A, Eguchi M, et al. Identification of a gene expression signature associated with pediatric AML prognosis. Blood. 2003;102(5):1849-1856.
- [19] Wang Y, Klijn JGM, Zhang Y, et al. Gene-expression profiles to predict distant metastasis of lymph-node-negative primary breast cancer. Lancet. 2005;365(9460):617-679.
- [20] Gashaw I, Grümmer R, Klein-Hitpass L, et al. Gene signatures of testicular seminoma with emphasis on expression of ets variant gene 4. Cell Mol Life Sci. 2005;62(19-20):2359-2368.
- [21] Petricoin EF, Ardekani AM, Hitt BA, et al. Use of proteomic patterns in serum to identify ovarian cancer. Lancet. 2002;359(9306):572-577.
- [22] Alon U, Barkai N, Notterman DA, et al. Broad patterns of gene expression revealed by clustering analysis of tumor and normal colon tissues probed by oligonucleotide arrays. Proc Natl Acad USA. 1999;92(12):6745-6750.
- [23] Pomeroy SL, Tamayo P, Gaasenbeek M, et al. Prediction of central nervous system embryonal tumour outcome based on gene expression. 2002;415(6870):436-442.
- [24] Singh D, Febbo PG, Ross K, et al. Gene expression correlates of clinical prostate cancer behavior. 2002;1(2):203-209
- [25] Verhaak RG, Wouters BJ, Erpelinck CA, et al. Prediction of molecular subtypes in acute myeloid leukemia based on gene expression profiling. 2009;94(1):131-134.
- [26] Delen D, Walker G, Kadam A. Predicting breast cancer survivability: a comparison of three data mining methods. Artif Intell Med. 2004;34(2):113-127.
- [27] Cruz-Roa A, Basavanhally A, González F, et al. Automatic detection of invasive ductal carcinoma in whole slide images with convolutional neural networks. Proc SPIE 9041, Medical Imaging 2014: Digital Pathology: 904103.
- [28] Kermany DS, Khang K, Goldbaum MH. Labeled Optical Coherence Tomography (OCT) and Chest X-Ray Images for Classification. doi: 10.17632/rscbjbr9sj.2
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d46531c6-5fa5-4538-9d9c-cfe899681828