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Abstract. In this paper, we study semicircular elements and circular elements in a certain
Banach ∗-probability space (LS, τ0) induced by analysis on the p-adic number fields Qp

over primes p. In particular, by truncating the set P of all primes for given suitable real
numbers t < s in R, two different types of truncated linear functionals τt1<t2 , and τ+

t1<t2
are constructed on the Banach ∗-algebra LS. We show how original free distributional data
(with respect to τ0) are distorted by the truncations on P (with respect to τt<s, and τ+

t<s).
As application, distorted free distributions of the semicircular law, and those of the circular
law are characterized up to truncation.
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1. INTRODUCTION

The main purposes of this paper are (i) to construct semicircular elements induced by
analysis on the p-adic number fields Qp over primes p, in a certain Banach ∗-probability
space (LS, τ0), (ii) to establish other types of linear functionals τt<s, and τ+

t<s on
the Banach ∗-algebra LS for suitable real numbers t < s in R, truncating the set
P of all primes, and (iii) to study how our truncations of (ii) affect, or distort the
original free-distributional data on (LS, τ0). To do that, we restrict our interests
to the Banach ∗-subalgebra LS of LS, generated by the semicircular elements of (i),
and the corresponding Banach ∗-probabilistic sub-structure (LS, τ0). Our main results,
in particular, characterize how the semicircular law, and the circular law are distorted
by our truncations on P.
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In [10] and [6], we constructed and studied weighted-semicircular elements and
semicircular elements induced by p-adic number fields Qp, for all p ∈ P. We showed
there that p-adic number theory provides weighted-semicircular laws, and the semicir-
cular law. In this paper, certain “truncated” free-probabilistic information of the free
probability of [6] is studied.

1.1. PREVIEW AND MOTIVATION

Relations between primes and operators have been studied. For instance, we consid-
ered in [5] and [4] how primes act on certain von Neumann algebras generated by
p-adic and Adelic measure spaces as operators. In [3] and [9], primes are regarded as
linear functionals acting on arithmetic functions. Independently, in [8], we studied
free-probabilistic structures on Hecke algebras H (GL2(Qp)), for primes p (e.g., [2]
and [26]). Number-theoretic results motivated such earlier works (see e.g., [11, 12],
[13–20,23], and [28]).

In [10], the authors constructed (weighted-)semicircular elements in a certain
Banach ∗-algebra LSp induced by the ∗-algebraMp of measurable functions on a p-adic
number fields Qp, for a prime p ∈ P. In [6], the first-named author constructed the
free product Banach ∗-probability space

(
LS, τ0) of the Banach ∗-algebras {LSp}p∈P

of [10], and studied (weighted-)semicircular elements of LS as free generators. As
application, the asymptotic semicircular laws “over P” are considered in [7].

To make this paper be as self-contained as possible, some main results from [6]
will be re-considered below, in short Sections 1 through 7. In this paper, we are
interested in the cases where the free product linear functional τ0 on LS of [6] is
truncated over P . How such truncations affect, or distort, the original free-distributional
data? Especially, how such truncations distort the semicircular law on LS? The
answers to these questions constitute major parts of our main results. As application,
we characterize how our truncations distort the circular law on LS.

1.2. OVERVIEW

In Sections 2, we briefly introduce backgrounds of our works. In the short Sec-
tions 3 through 7, we construct our Banach ∗-probability space (LS, τ0), and study
(weighted-)semicircular elements induced from p-adic analysis on Qp, for primes p.

In Section 8, we define a free-probabilistic sub-structure LS0 =
(
LS, τ0) of

(
LS, τ0),

generated by the free reduced words of LS, having “non-zero” free distributions,
and study free-probabilistic properties on LS0; and then, construct truncated linear
functionals of τ0 on LS to study how free-probabilistic data of such free reduced words
are distorted from our truncations on primes, in Section 9.

In Section 10, we provide a different type of truncated linear functionals on LS
over P under direct product, and investigate new free-probabilistic structures on LS.
Remark that the truncated free probabilistic structures of LS0 in Sections 9 and 10
are totally different from each other.

In Section 11, to distinguish-and-emphasize the differences between them, we
provide some applications of our main results of Sections 8, 9 and 10; by taking
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truncated linear functionals of Sections 9 and 10 on LS. In particular, we show how
the circular law is distorted (or affected) by the truncations on P.

Independently, in Section 11, a new type of free random variables is introduced.
A free random variable x is said to be followed by the semicircular law in a topological
∗-probability space (A,ψ), if (i) x is not self-adjoint, as an operator, and (ii) the free
distribution of x is characterized by the joint free moments of x and its adjoint x∗,
satisfying

ψ (xr1xr2 . . . xrn) = ωncn
2
,

for all (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N, where

ωk =
{

1 if k is even,
0 if k is odd,

and
ck = the k-th Catalan number = (2k)!

k!(k + 1)!
for all k ∈ N0 = N ∪ {0}.

2. PRELIMINARIES

In this section, we offer about background for our work.

2.1. FREE PROBABILITY

For basic free probability, see [27] and [29] (and the cited papers therein). Free probability
is the noncommutative operator-algebraic version of classical measure theory (including
probability theory) and statistical analysis. As an independent branch of operator
algebra theory, it has various applications not only in functional analysis (e.g., [21],
[22, 24] and [25]), but also in related fields (e.g., [1] through [10]).

We here use combinatorial free probability of Speicher (e.g., [27]). In the text,
without introducing detailed definitions and combinatorial backgrounds, free moments
and free cumulants of operators will be computed to verify the free distributions of
them. Also, we use free product of ∗-probability spaces, without precise introduction.

2.2. ANALYSIS ON Qp
For more about p-adic analysis and Adelic analysis, see e.g., [14,17,23,29] and [28]. In
this paper, we use same definitions, and notations of [28]. Let p ∈ P be a prime, and
let Q be the set of all rational numbers. Define a non-Archimedean norm |·|p on Q by

|x|p =
∣∣∣pk a

b

∣∣∣
p

= 1
pk
,

whenever x = pk ab , where k, a ∈ Z, and b ∈ Z \ {0}. We call |·|p , the p-norm on Q (as
in [28]), for all p ∈ P.
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The p-adic number field Qp is the maximal p-norm closures in Q, i.e., under norm
topology, the set Qp forms a Banach space, for p ∈ P.

All elements x of Qp are expressed by

x =
∞∑

k=−N
xkp

k, with xk ∈ {0, 1, . . . , p− 1},

for N ∈ N, decomposed by

x =
−1∑

l=−N
xlp

l +
∞∑

k=0
xkp

k.

If x =
∑∞
k=0 xkp

k in Qp, then we call x, a p-adic integer. Remark that, x ∈ Qp is
a p-adic integer, if and only if |x|p ≤ 1. So, by collecting all p-adic integers in Qp, one
can define the unit disk Zp of Qp,

Zp = {x ∈ Qp : |x|p ≤ 1}.

Under the p-adic addition and the p-adic multiplication of [28], this Banach space
Qp forms a field algebraically, i.e., Qp is a Banach field.

One can view this Banach field Qp as a measure space,

Qp = (Qp, σ(Qp), µp) ,

where σ(Qp) is the σ-algebra of Qp, consisting of all µp-measurable subsets, where µp
is a left-and-right additive invariant Haar measure on Qp, satisfying

µp(Zp) = 1.

If we define
Uk = pkZp = {pkx ∈ Qp : x ∈ Zp}, (2.1)

for all k ∈ Z, then these µp-measurable subsets Uk’s of (2.1) satisfy

Qp =
⋃

k∈Z
Uk,

and
µp (Uk) = 1

pk
= µp (x+ Uk) , for all x ∈ Qp,

and
. . . ⊂ U2 ⊂ U1 ⊂ U0 = Zp ⊂ U−1 ⊂ U−2 ⊂ . . . , (2.2)

i.e., the family {Uk}k∈Z of (2.1) forms a basis of the topology for Qp (e.g., [28]).
Define now subsets ∂k ∈ σ(Qp) by

∂k = Uk \ Uk+1, for all k ∈ Z. (2.3)



Deformation of semicircular and circular laws via p-adic number fields . . . 777

We call such µp-measurable subsets ∂k of (2.3), the k-th boundaries (of Uk)
in Qp, for all k ∈ Z. By (2.2) and (2.3), one obtains that

Qp =
⊔

k∈Z
∂k,

and
µp (∂k) = µp (Uk)− µp (Uk+1) = 1

pk
− 1
pk+1 , (2.4)

where t means the disjoint union, for all k ∈ Z.
Now, letMp be the (pure-algebraic) algebra,

Mp = C [{χS : S ∈ σ(Qp)}] , (2.5)

where χS are the usual characteristic functions of µp-measurable subsets S of Qp.
So, f ∈Mp if and only if

f =
∑

S∈σ(Qp)

tSχS , with tS ∈ C, (2.6)

where
∑

is the finite sum. Remark that the algebraMp of (2.5) forms a ∗-algebra
over C, with its well-defined adjoint,


 ∑

S∈σ(Gp)

tSχS



∗
def=

∑

S∈σ(Gp)

tSχS ,

where tS ∈ C with their conjugates tS in C.
Let f ∈Mp be in the sense of (2.6) Then one can define the integral of f by

∫

Qp

fdµp =
∑

S∈σ(Qp)

tSµp(S). (2.7)

Remark that, by (2.5), the integral (2.7) is unbounded onMp, i.e.,
∫

Qp

χQp
dµp = µp (Qp) =∞, (2.8)

by (2.2).
Note that, by (2.4), if S ∈ σ(Qp), then there exists a unique subset ΛS of Z, such

that
ΛS = {j ∈ Z : S ∩ ∂j 6= ∅}, (2.9)

satisfying ∫

Qp

χSdµp =
∫

Qp

∑

j∈ΛS

χS∩∂jdµp =
∑

j∈ΛS

µp (S ∩ ∂j)
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by (2.7)

≤
∑

j∈ΛS

µp (∂j) =
∑

j∈ΛS

(
1
pj
− 1
pj+1

)
, (2.10)

by (2.4), for the subset ΛS of Z of (2.9).
Remark again that the right-hand side of (2.10) can be ∞, for instance, ΛQp = Z,

e.g., see (2.4), (2.7) and (2.8). By (2.10), one obtains the following proposition.

Proposition 2.1. Let S ∈ σ(Qp), and let χS ∈ Mp. Then there exist rj ∈ R, such
that

0 ≤ rj = µp(S ∩ ∂j)
µp(∂j)

≤ 1 in R, for all j ∈ ΛS ,

and ∫

Qp

χSdµp =
∑

j∈ΛS

rj

(
1
pj
− 1
pj+1

)
. (2.11)

3. FREE-PROBABILISTIC MODELS ONMp

Throughout this section, fix a prime p ∈ P, and let Qp be the corresponding p-adic
number field, and letMp be the ∗-algebra (2.5). In this section, we establish a suitable
free-probabilistic model onMp. Remark that, sinceMp is a “commutative” ∗-algebra,
free probability theory is not needed to be used-or-applied, but, for our purposes,
we here construct a free-probability-theoretic model onMp under free-probabilistic
language and terminology.

Let Uk be the basis elements (2.1), and ∂k, their boundaries (2.3) of Qp, i.e.,

Uk = pkZp, for all k ∈ Z, (3.1)

and
∂k = Uk \ Uk+1, for all k ∈ Z.

Define a linear functional ϕp :Mp → C by the integration (2.7), i.e.,

ϕp (f) =
∫

Qp

fdµp, for all f ∈Mp. (3.2)

Then, by (2.11), one obtains that

ϕp
(
χUj

)
= 1
pj
, and ϕp

(
χ∂j

)
= 1
pj
− 1
pj+1 ,

since
ΛUj

= {k ∈ Z : k ≥ j}, and Λ∂j
= {j},

for all j ∈ Z, where ΛS are in the sense of (2.9) for all S ∈ σ(Qp). Note that, by (2.8),
this linear functional ϕp of (3.2) is unbounded onMp.
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Definition 3.1. The pair (Mp, ϕp) is called the p-adic (unbounded-)measure space
for p ∈ P, where ϕp is the linear functional (3.2) onMp.

Let ∂k be the k-th boundaries (3.1) of Qp, for all k ∈ Z. Then, for k1, k2 ∈ Z,
one obtains that

χ∂k1
χ∂k2

= χ∂k1∩∂k2
= δk1,k2χ∂k1

,

and hence,

ϕp
(
χ∂k1

χ∂k2

)
= δk1,k2ϕp

(
χ∂k1

)
= δk1,k2

(
1
pk1
− 1
pk1+1

)
. (3.3)

Proposition 3.2. Let (j1, . . . , jN ) ∈ ZN , for N ∈ N. Then

N∏

l=1
χ∂jl

= δ(j1,...,jN )χ∂j1
inMp,

and hence,

ϕp

(
N∏

l=1
χ∂jl

)
= δ(j1,...,jN )

(
1
pj1
− 1
pj1+1

)
, (3.4)

where

δ(j1,...,jN ) =
(
N−1∏

l=1
δjl,jl+1

)
(δjN ,j1) .

Proof. The proof of (3.4) is done by induction on (3.3).

Recall that, for any S ∈ σ (Qp) ,

ϕp (χS) =
∑

j∈ΛS

rj

(
1
pj
− 1
pj+1

)
, (3.5)

for some 0 ≤ rj ≤ 1, for j ∈ ΛS , by (2.11). So, by (3.5), if S1, S2 ∈ σ (Qp) , then

χS1χS2 =


 ∑

k∈ΛS1

χS1∩∂k




 ∑

j∈ΛS2

χS2∩∂j




=
∑

(k,j)∈ΛS1×ΛS2

δk,jχ(S1∩S2)∩∂j
=

∑

j∈ΛS1,S2

χ(S1∩S2)∩∂j
,

(3.6)

where
ΛS1,S2 = ΛS1 ∩ ΛS2 ,

by (2.4).
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Proposition 3.3. Let Sl ∈ σ(Qp), and let χSl
∈ (Mp, ϕp), for l = 1, . . . , N, for

N ∈ N. Let

ΛS1,...,SN
=

N⋂

l=1
ΛSl

in Z,

where ΛSl
are in the sense of (2.9), for l = 1, . . . , N . Then there exist rj ∈ R, such

that
0 ≤ rj ≤ 1 in R, for all j ∈ ΛS1,...,SN

,

and

ϕp

(
N∏

l=1
χSl

)
=

∑

j∈ΛS1,...,SN

rj

(
1
pj
− 1
pj+1

)
. (3.7)

Proof. The proof of (3.7) is done by the induction on (3.6), and by (3.4).

4. REPRESENTATIONS OF (Mp, ϕp)

Fix a prime p ∈ P. Let (Mp, ϕp) be the p-adic measure space. By understanding Qp
as a measure space, construct the L2-space,

Hp
def= L2 (Qp, σ(Qp), µp) = L2 (Qp) , (4.1)

over C. Then this L2-space Hp of (4.1) is a well-defined Hilbert space, consisting of all
square-integrable elements ofMp, equipped with its inner product 〈·, ·〉2,

〈f1, f2〉2
def=
∫

Qp

f1f
∗
2 dµp, (4.2)

for all f1, f2 ∈ Hp, inducing the L2-norm,

‖f‖2
def=
√
〈f, f〉2, for all f ∈ Hp,

where 〈·, ·〉2 is the inner product (4.2) on Hp.

Definition 4.1. We call the Hilbert space Hp of (4.1), the p-adic Hilbert space.
By the definition (4.1) of the p-adic Hilbert space Hp, our ∗-algebra Mp acts

on Hp, via an algebra-action αp,

αp(f) (h) = fh, for all h ∈ Hp, (4.3)

for all f ∈Mp. i.e., the morphism αp of (4.3) is a ∗-homomorphism fromMp to the
operator algebra B(Hp) consisting of all bounded linear operators on Hp. For instance,

αp
(
χQp

)

 ∑

S∈σ(Qp)

tSχS


 =

∑

S∈σ(Qp)

tSχQp∩S =
∑

S∈σ(Qp)

tSχS , (4.4)

for all h =
∑
S∈σ(Qp) tSχS ∈ Hp, with ‖h‖2 < ∞, for χQp

∈ Mp, even though
χQp

/∈ Hp.
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Indeed, it is not difficult to check that

αp(f1f2) = αp(f1)αp(f2) on Hp, for all f1, f2 ∈Mp,

(αp(f))∗ = α(f∗) on Hp, for all f ∈Mp

(4.5)

(e.g., see [6] and [10]).
Denote αp(f) by αpf , for all f ∈Mp. Also, for convenience, denote αpχS

simply by
αpS , for all S ∈ σ (Qp).

Note that, by (4.4), one has a well-defined operator αpQp
= αpχQp

in B(Hp), and it
satisfies that

αpQp
(h) = h = 1Hp (h) , for all h ∈ Hp, (4.6)

where 1Hp
∈ B(Hp) is the identity operator on Hp.

Proposition 4.2. The pair (Hp, α
p) is a well-determined Hilbert space representation

ofMp.

Proof. It is sufficient to show that αp is an algebra-action of Mp acting on Hp.
But, by (4.5), this linear morphism αp of (4.3) is indeed a ∗-homomorphism fromMp

into B(Hp).

For a p-adic number fields, readers can check other types of representations in e.g.,
[18] and [20], different from our Hilbert-space representation (Hp, α

p).

Definition 4.3. The Hilbert-space representation (Hp, α
p) is said to be the p-adic

(Hilbert-space) representation ofMp.

Depending on the p-adic representation (Hp, α
p) of Mp, one can construct the

C∗-subalgebra Mp of B(Hp) as follows.

Definition 4.4. Let Mp be the operator-norm closure ofMp in the operator algebra
B(Hp), i.e.,

Mp
def= αp (Mp) = C

[
αpf : f ∈Mp

]
(4.7)

in B(Hp), where X mean the operator-norm closures of subsets X of B(Hp).
This C∗-algebra Mp of (4.7) is called the p-adic C∗-algebra of (Mp, ϕp) .

By the definition (4.7) of the p-adic C∗-algebra Mp, it is a unital C∗-algebra,
containing its unity (or the unit, or the multiplication-identity) 1Hp = αpQp

, by (4.6).

5. FREE-PROBABILISTIC MODELS ON Mp

Throughout this section, let us fix a prime p ∈ P, and let (Mp, ϕp) be the corre-
sponding p-adic measure space, and let (Hp, α

p) be the p-adic representation ofMp,
inducing the corresponding p-adic C∗-algebra Mp of (4.7). We here consider suitable
(non-traditional) free-probabilistic models on Mp.
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Define a linear functional ϕpj : Mp → C by a linear morphism,

ϕpj (a) def=
〈
a(χ∂j ), χ∂j

〉
2 , for all a ∈Mp, (5.1)

for χ∂j
∈ Hp, where 〈·, ·〉2 is the inner product (4.2) on the p-adic Hilbert space Hp

of (4.1), and ∂j are the j-th boundaries (3.1) of Qp, for all j ∈ Z. It is not hard to
check such a linear functional ϕpj on Mp is bounded, since

ϕpj (αpS) =
〈
αpS
(
χ∂j

)
, χ∂j

〉
2 =

〈
χSχ∂j

, χ∂j

〉
2 =

〈
χS∩∂j

, χ∂j

〉
2

=
∫

Qp

χS∩∂j
dµp = µp (S ∩ ∂j) ≤ µp (∂j) = 1

pj
− 1
pj+1

for all S ∈ σ(Qp), for any fixed j ∈ Z.
Remark that, if a ∈Mp, then

a =
∑

S∈σ(Qp)

tSα
p
S inMp (tS ∈ C),

where
∑

is finite or infinite (limit of finite) sum(s) under C∗-topology of Mp, and
hence, the morphisms ϕpj of (5.1) are indeed well-defined bounded linear functionals
on Mp, for all j ∈ Z.

Definition 5.1. Let ϕpj be bounded linear functionals (5.1) on the p-adic C∗-algebra
Mp, for all j ∈ Z. Then the pairs

(
Mp, ϕ

p
j

)
are said to be the j-th p-adic C∗-measure

spaces, for all j ∈ Z.

So, one can get the system

{(Mp, ϕ
p
j ) : j ∈ Z}

of the j-th p-adic C∗-measure spaces (Mp, ϕ
p
j )’s.

Note that, for any fixed j ∈ Z, and (Mp, ϕ
p
j ), the unity

1Mp

denote= 1Hp = αpQp
ofMp

satisfies that

ϕpj
(
1Mp

)
=
〈
χQp∩∂j

, χ∂j

〉
2 =

∥∥χ∂j

∥∥2 = 1
pj
− 1
pj+1 .

So, the j-th p-adic C∗-measure space (Mp, ϕ
p
j ) is a “bounded” measure space, but not

a (classical) probability space, in general.
Now, fix j ∈ Z, and take the corresponding j-th p-adic C∗-measure space

(
Mp, ϕ

p
j

)
.

For S ∈ σ (Qp) , and an element αpS ∈Mp, one has that
ϕpj (α

p
S) =

〈
αpS(χ∂j ), χ∂j

〉
2 =

〈
χS∩∂j , χ∂j

〉
2

=
∫

Qp

χS∩∂jdµp = µp (S ∩ ∂j) = rS

(
1
pj
− 1
pj+1

)
, (5.2)

by (3.7), for some 0 ≤ rS ≤ 1 in R.
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Proposition 5.2. Let S ∈ σ (Qp) , and αpS ∈
(
Mp, ϕ

p
j

)
, for a fixed j ∈ Z. Then there

exists rS ∈ R, such that
0 ≤ rS ≤ 1 in R,

and
ϕpj
(
(αpS)n

)
= rS

(
1
pj
− 1
pj+1

)
, for all n ∈ N. (5.3)

Proof. Remark that the element αpS is a projection in Mp, in the sense that

(αpS)∗ = αpS = (αpS)2
, inMp,

and hence,
(αpS)n = αpS , for all n ∈ N.

Thus, we obtain the formula (5.3) by (5.2).

As a corollary of (5.3), we obtain the following results.
Corollary 5.3. Let ∂k be the k-th boundaries (3.1) of Qp, for all k ∈ Z. Then

ϕpj
((
αp∂k

)n) = δj,k

(
1
pj
− 1
pj+1

)
, (5.4)

for all n ∈ N, for k ∈ Z.

6. SEMIGROUP C∗-SUBALGEBRAS Sp ofMp

Let Mp be the p-adic C∗-algebra (4.7) for p ∈ P. Take operators

Pp,j = αp∂j
∈Mp, (6.1)

for all j ∈ Z.
As we have seen in (5.3) and (5.4), these operators Pp,j are projections on the

p-adic Hilbert space Hp in Mp, for all ∈ P, j ∈ Z. We now restrict our interests to
these projections Pp,j of (6.1).
Definition 6.1. Fix p ∈ P. Let Sp be the C∗-subalgebra

Sp = C∗ ({Pp,j}j∈Z) = C [{Pp,j}j∈Z] ofMp, (6.2)

where Pp,j are projections (6.1), for all j ∈ Z. We call this C∗-subalgebra Sp,
the p-adic boundary (C∗-)subalgebra of Mp.

The p-adic boundary subalgebra Sp acts like a diagonal subalgebra of the p-adic
C∗-algebra Mp.

Proposition 6.2. Let Sp be the p-adic boundary subalgebra (6.2) of the p-adic
C∗-algebra Mp. Then

Sp
∗-iso= ⊕

j∈Z
(C · Pp,j) ∗-iso= C⊕Z, (6.3)

in Mp.
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Proof. It suffices to show that the generating projections {Pp,j}j∈Z of the p-adic
boundary subalgebra Sp are mutually orthogonal from each other. But, one can get
that

Pp,j1Pp,j2 = αp
(
χ∂p

j1
∩∂p

j2

)
= δj1,j2α

p
∂p

j1
= δj1,j2Pp,j1 ,

in Sp, for all j1, j2 ∈ Z. Therefore, the structure theorem (6.3) holds.

Since the p-adic boundary subalgebra Sp of (6.2) is a C∗-subalgebra of Mp,
one can naturally obtain the measure spaces,

Sp,j
denote=

(
Sp, ϕ

p
j

)
, for all j ∈ Z, for p ∈ P, (6.4)

where the linear functionals ϕpj of (6.4) are the restrictions ϕpj |Sp of (5.1), for all
p ∈ P, j ∈ Z.

7. WEIGHTED-SEMICIRCULAR ELEMENTS

Fix p ∈ P, and let Sp be the p-adic boundary subalgebra of the p-adic C∗-algebra
Mp, satisfying the structure theorem (6.3). Recall that the generating projections Pp,j
of Sp satisfy

ϕpj (Pp,j) = 1
pj
− 1
pj+1 , for all j ∈ Z, (7.1)

by (5.3) and (5.4).
Now, let φ be the Euler totient function, the arithmetic function,

φ : N→ C, (7.2)

defined by
φ(n) = |{k ∈ N : k ≤ n, gcd(n, k) = 1}| ,

for all n ∈ N, where gcd means the greatest common divisor.
By (7.2), one has

φ(p) = p− 1 = p

(
1− 1

p

)
, for all p ∈ P. (7.3)

So, we have

ϕpj (Pp,k) = δj,k

(
1
pj
− 1
pj+1

)
= δj,k

pj

(
1− 1

p

)

= δj,k

(
p

pj+1

(
1− 1

p

))
= δj,k

(
φ(p)
pj+1

)
,

(7.4)

by (7.1) and (7.3), for Pp,k ∈ Sp, for all k ∈ Z.
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Now, for a fixed prime p, define new linear functionals τpj on Sp by

τpj = 1
φ(p)ϕ

p
j , on Sp, (7.5)

for all j ∈ Z, where ϕpj are in the sense of (6.4).
Then one obtains new free-probabilistic models of Sp,

{Sp(j) =
(
Sp, τ

p
j

)
: p ∈ P, j ∈ Z}, (7.6)

where τpj are in the sense of (7.5).
Proposition 7.1. Let Sp(j) = (Sp, τ

p
j ) be in the sense of (7.6), and let Pp,k be

generating operators (6.1) of Sp(j), for p ∈ P, j ∈ Z. Then

τpj
(
Pnp,k

)
= δj,k
pj+1 , for all n ∈ N. (7.7)

Proof. The formula (7.7) is proven by (7.4) and (7.5), since Pnp,k = Pp,k for all n ∈ N,
k ∈ Z.

7.1. SEMICIRCULAR AND WEIGHTED-SEMICIRCULAR ELEMENTS

Let (A,ϕ) be an arbitrary topological ∗-probability space (C∗-probability space, or
W ∗-probability space, or Banach ∗-probability space, etc.), equipped with a topolog-
ical ∗-algebra A (C∗-algebra, resp., W ∗-algebra, resp., Banach ∗-algebra, etc.), and
a (bounded or unbounded) linear functional ϕ on A. If an operator a ∈ A is regarded
as an element of (A,ϕ), we call a, a free random variable of (A,ϕ).
Definition 7.2. Let a be a self-adjoint free random variable in (A,ϕ). It is said to
be semicircular in (A,ϕ), if

ϕ(an) = ωncn, for all n ∈ N, (7.8)

with
ωn =

{
1 if n is even,
0 if n is odd,

for all n ∈ N, and

cn = 1
n+ 1

(
2n
n

)
= 1
n+ 1

(2n)!
(n!)2 = (2n)!

n!(n+ 1)!
are the n-th Catalan numbers, for all n ∈ N0 = N ∪ {0}.

It is well-known that, if kn(·) is the free cumulant on A in terms of a linear
functional ϕ (in the sense of [27]), then a self-adjoint free random variable a is
semicircular in (A,ϕ), if and only if

kn(a, a, . . . , a︸ ︷︷ ︸
n-times

) =
{

1 if n = 2,
0 otherwise, (7.9)
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for all n ∈ N. The above equivalent free-distributional data (7.9) of the semicircularity
(7.8) is obtained by the Möbius inversion of [27].

Motivated by (7.9), one can define the weighted-semicircularity.

Definition 7.3. Let a ∈ (A,ϕ) be a self-adjoint free random variable. It is said to be
weighted-semicircular in (A,ϕ) with its weight t0 (in short, t0-semicircular), if there
exists t0 ∈ C× = C \ {0}, such that

kn(a, a, . . . , a︸ ︷︷ ︸
n-times

) =
{
t0 if n = 2,
0 otherwise, (7.10)

for all n ∈ N, where kn(·) is the free cumulant on A in terms of ϕ.

By (7.9) and (7.10), every 1-semicircular element is semicircular. By the definition
(7.10), and by the Möbius inversion of [27], a self-adjoint free random variable a is
t0-semicircular in (A,ϕ), if and only if there exists t0 ∈ C×, such that

ϕ(an) = ωnt
n
2
0 cn

2
, (7.11)

where ωn and cn
2
are in the sense of (7.8), for all n ∈ N.

7.2. TENSOR PRODUCT BANACH ∗-ALGEBRA LSp

Let Sp(k) = (Sp, τ
p
k ) be in the sense of (7.6), for p ∈ P, k ∈ Z. Define now a bounded

linear transformations cp and ap “acting on Sp”, by the linear morphisms satisfying

cp (Pp,j) = Pp,j+1 and ap (Pp,j) = Pp,j−1, (7.12)

on Sp, for all j ∈ Z.
By the definition (7.12), these linear transformations cp and ap are bounded under

the operator-norm induced by the C∗-norm on Sp. So, the linear transformations
cp and ap are regarded as Banach-space operators acting “on Sp”, by regarding the
C∗-algebra Sp as a Banach space equipped with its C∗-norm, i.e., cp and ap are
elements of the operator space B (Sp) consisting of all bounded linear transformations
on the Banach space Sp.

Definition 7.4. The Banach-space operators cp and ap of (7.12) are called the
p-creation, respectively, the p-annihilation onSp, for p ∈ P. Define a new Banach-space
operator lp ∈ B (Sp) , by

lp = cp + ap on Sp. (7.13)

We call it the p-radial operator on Sp.

Let lp be the p-radial operator cp+ ap of (7.13) on Sp. Construct a closed subspace
Lp of B (Sp) by

Lp = C[{lp}] in B(Sp), (7.14)

where Y mean the operator-norm-topology closures of all subsets Y of B(Sp).
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By the definition (7.14), Lp is not only a closed subspace of the topological vector
space B(Sp), but also an algebra embedded in B(Sp). On this Banach algebra Lp,
define the adjoint ∗ by

∞∑

k=0
sklkp ∈ Lp 7−→

∞∑

k=0
sklkp ∈ Lp, (7.15)

where sk ∈ C with their conjugates sk ∈ C (e.g., [6]).
Then, equipped with the adjoint (7.15), this Banach algebra Lp of (7.14) forms

a Banach ∗-algebra.
Definition 7.5. Let Lp be a Banach ∗-algebra (7.14) in the operator space B(Sp),
for p ∈ P. We call it the p-radial (Banach-∗-)algebra on Sp.

Let Lp be the p-radial algebra (7.14) on Sp. Construct now the tensor product
Banach ∗-algebra LSp by

LSp = Lp ⊗C Sp, (7.16)
where ⊗C means the tensor product of Banach ∗-algebras.

Note that the operators lkp ⊗ Pp,j generate the Banach ∗-algebra LSp of (7.16),
for all k ∈ N0 = N∪ {0}, and j ∈ Z, where Pp,j are the generating projections of (6.1)
in Sp, with axiomatization:

l0p = 1Sp
, the identity operator on Sp,

in B(Sp), satisfying
1Sp(T ) = T, for all T ∈ Sp,

for all j ∈ Z.
Define now a linear morphism

Ep : LSp → Sp

by a linear transformation satisfying that

Ep
(
lkp ⊗ Pp,j

)
=
(
pj+1)k+1

[k2 ] + 1
lkp(Pp,j), (7.17)

for all k ∈ N0, j ∈ Z, where
[
k
2
]
is the minimal integer greater than or equal to k

2 , for
all k ∈ N0; for example, [

3
2

]
= 2 =

[
4
2

]
.

By the cyclicity (7.14) of the tensor factor Lp of LSp, and by the structure theorem
(6.3) of the other tensor factor Sp of LSp, the above morphism Ep of (7.17) is
a well-defined bounded surjective linear transformation.

Now, consider how our p-radial operator lp acts on Sp. If cp and ap are the
p-creation, respectively, the p-annihilation on Sp, then

cpap (Pp,j) = Pp,j = apcp (Pp,j) ,
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for all j ∈ Z, p ∈ P, and hence,

cpap = 1Sp = apcp on Sp. (7.18)

Lemma 7.6. Let cp,ap be the p-creation, respectively, the p-annihilation on Sp. Then

cnpanp = (cpap)n = 1Sp = (apcp)n = anp cnp ,

and
cn1
p an2

p = an2
p cn1

p on Sp, (7.19)
for all n, n1, n2 ∈ N0.

Proof. The formula (7.19) holds by (7.18).

By (7.19), one can get that

lnp = (cp + ap)n =
n∑

k=0

(
n

k

)
ckpan−kp , (7.20)

with
c0
p = 1Sp

= a0
p,

for all n ∈ N, where
(
n

k

)
= n!
k!(n− k)! , for all k ≤ n ∈ N0.

Thus, one obtains the following proposition.
Proposition 7.7. Let lp ∈ Lp be the p-radial operator on Sp. Then, for all m ∈ N,
(i) l2m−1

p does not contain 1Sp
-term,

(ii) l2mp contains its 1Sp
-term,

(2m
m

)
· 1Sp

.
Proof. The proofs of (i) and (ii) are done by straightforward computations under
(7.19) and (7.20). See [6] for more details.

7.3. WEIGHTED-SEMICIRCULAR ELEMENTS Qp,j in LSp

Fix p ∈ P, and let LSp = Lp ⊗C Sp be the tensor product Banach ∗-algebra (7.16),
and let Ep be the linear transformation (7.17) from LSp onto Sp. Throughout this
section, fix a generating operator

Qp,j = lp ⊗ Pp,j of LSp, (7.21)

for j ∈ Z, where Pp,j are projections (6.1) generating Sp.
If Qp,j ∈ LSp is in the sense of (7.21) for j ∈ Z, then

Ep
(
Qnp,j

)
= Ep

(
lnp ⊗ Pp,j

)
=
(
pj+1)n+1

[
n
2
]

+ 1
lnp (Pp,j) , (7.22)

by (7.17), for all n ∈ N.
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Now, for a fixed j ∈ Z, define a linear functional τ0
p,j on LSp by

τ0
p,j = τpj ◦ Ep on LSp, (7.23)

where τpj = 1
φ(p)ϕ

p
j is in the sense of (7.5).

By the bounded-linearity of both τpj and Ep, the morphism τ0
p,j of (7.23) is

a bounded linear functional on LSp. By (7.22) and (7.23), if Qp,j is in the sense
of (7.21), then

τ0
p,j

(
Qnp,j

)
= (pj+1)n+1

[ n
2 ]+1 τpj

(
lnp (Pp,j)

)
, (7.24)

for all n ∈ N.

Theorem 7.8. Let Qp,j = lp ⊗ Pp,j ∈
(
LSp, τ

0
p,j

)
, for a fixed j ∈ Z. Then

τ0
p,j

(
Qnp,j

)
= ωncn

2

(
p2(j+1)

)n
2
, (7.25)

for all n ∈ N, where ωn are in the sense of (7.11).

Proof. The formula (7.25) is obtained by Proposition 7.7 and (7.24). See [10] for
details.

8. SEMICIRCULARITY ON LS

For all p ∈ P, j ∈ Z, let
LSp(j) =

(
LSp, τ

0
p,j

)
(8.1)

be the measure-theoretic structures of the tensor product Banach ∗-algebra LSp

of (7.16), and the linear functional τ0
p,j of (7.24).

Definition 8.1. We call such pairs LSp(j) of (8.1), the j-th p-adic filter, for all
p ∈ P, j ∈ Z.

Let Qp,k = lp⊗Pp,k be the k-th generating elements of the j-th p-adic filter LSp(j)
of (8.1), for all k ∈ Z, for fixed p ∈ P, j ∈ Z. Then they satisfy

τ0
p,j

(
Qnp,k

)
= δj,k

(
ωn

(
p2(j+1)

)n
2
cn

2

)
, (8.2)

by (7.23) and (7.25), for all n ∈ N.
For the family {

LSp(j) =
(
LSp, τ

0
p,j

)
: p ∈ P, j ∈ Z

}

of p-adic filters of (8.1), define the free product Banach ∗-probability space,

LS
denote=

(
LS, τ0) def= ?

p∈P,j∈Z
LSp(j). (8.3)
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as in [27] and [29], with

LS = ?
p∈P,j∈Z

LSp, and τ0 = ?
p∈P,j∈Z

τ0
p,j .

Note that the Banach ∗-probability space LS of (8.3) is a well-defined Banach
∗-probability space with its free blocks LSp(j), for all p ∈ P, j ∈ Z. For more about
(free-probabilistic) free product, see [27] and [29].
Definition 8.2. The Banach ∗-probability space LS =

(
LS, τ0) of (8.3) is called

the free Adelic filterization.
Let LS be the free Adelic filterization (8.3). Then, by (8.2), we obtain a subset

Q = {Qp,j = lp ⊗ Pp,j ∈ LSp(j)}p∈P,j∈Z
in LS.

Since all entries Qp,j of the above family Q are taken from the j-th p-adic filters
LSp(j), which are the free blocks of LS, they are free from each other in LS, for all
p ∈ P, j ∈ Z. Also, since Qnp,j ∈ LSp(j) in LS, for all n ∈ N, they are free reduced
words with their lengths-1, and hence,

τ0 (Qnp,j
)

= τ0
p,j

(
Qnp,j

)
= ωnp

n(j+1)cn
2
,

by (8.2) and (8.3), for all n ∈ N.
Lemma 8.3. Let Q be the subset of the free Adelic filterization LS introduced in the
above paragraph. Then all elements Qp,j ∈ Q are p2(j+1)-semicircular in LS.

Proof. As we discussed in the very above paragraphs, it is shown by (7.11), (8.2)
and (8.3).

Recall that a subset S of an arbitrary (topological or pure-algebraic) ∗-probability
space (A,ϕ) is said to be a free family, if all elements of S are mutually free from each
other (e.g., [27] and [28]).
Definition 8.4. Let S be a free family in an arbitrary topological ∗-probability space
(A,ϕ). This family S is called a free (weighted-)semicircular family, if every element
of S is (weighted-)semicircular in (A,ϕ).

By the above lemma, we obtain the following fact.
Theorem 8.5. Let LS be the free Adelic filterization (8.3), and let

Q = {Qp,j ∈ LSp(j)}p∈P,j∈Z ⊂ LS, (8.4)

where LSp(j) are the j-th p-adic filters, the free blocks of LS. Then this family Q
is a free weighted-semicircular family in LS.

Proof. LetQ be a subset (8.4) of LS. Then, by the above lemma, all elements Qp,j of Q
are p2(j+1)-semicircular in LS, for all p ∈ P, j ∈ Z. Also, they are mutually free from
each other in LS, because all entries Qp,j are contained in the mutually distinct
free blocks LSp(j) of LS, for all p ∈ P, j ∈ Z. Therefore, the family Q forms a free
weighted-semicircular family in LS.
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Now, take elements

Θp,j
def= 1

pj+1Qp,j , for all p ∈ P, j ∈ Z, (8.5)

in LS, where Qp,j ∈ Q, where Q is the free weighted-semicircular family (8.4) in LS.
Then, by the self-adjointness of Qp,j , these operators Θp,j of (8.5) are self-adjoint

in LS, too, because
pj+1 ∈ R in C×,

satisfying pj+1 = pj+1, for all p ∈ P, j ∈ Z.

Theorem 8.6. Let Θp,j ∈ LSp(j) be free random variables (8.5) of the free Adelic
filterization LS, for all p ∈ P, j ∈ Z. Then the family

Θ = {Θp,j ∈ LSp(j) : p ∈ P, j ∈ Z} (8.6)

forms a free semicircular family in LS.

Proof. Let Θ be the family (8.6). Then it forms a free family in LS, because Θp,j ∈ Θ
are the scalar-product of Qp,j ∈ Q, and the family Q of (8.4) is a free family in LS.
Observe now that

τ0 (Θn
p,j

)
= τ0

((
1

pj+1

)n
Qnp,j

)

=
(

1
pj+1

)n
τ0 (Qnp,j

)
=
(

1
pj+1

)n (
ωnp

n(j+1)cn
2

)

by the p2(j+1)-semicircularity of Qp,j ∈ Q

= ωncn
2
, (8.7)

for all n ∈ N, for all p ∈ P, j ∈ Z.
Thus, all entries Θp,j of the free family Θ are semicircular by (7.8) and (8.7).

Therefore, this free family Θ of (8.6) forms a free semicircular family in LS.

Define a Banach ∗-subalgebra LS of LS by

LS def= C[Q] in LS, (8.8)

where Q is our free weighted-semicircular family (8.4), and Y mean the Banach
topology closures of subsets Y of LS.

Then one can obtain the following structure theorem for the Banach ∗-algebra LS
of (8.8) in LS.

Theorem 8.7. Let LS be the Banach ∗-subalgebra (8.8) of the free Adelic filterization
LS generated by the free weighted-semicircular family Q of (8.4). Then

LS = C [Θ] in LS, (8.9)

where Θ is the free semicircular family (8.6).
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Moreover,

LS ∗-iso= ?
p∈P,j∈Z

C [{Qp,j}] ∗-iso= C
[

?
p∈P,j∈Z

{Qp,j}
]
, (8.10)

in LS, where “∗-iso= ” means “being Banach-∗-isomorphic”, and

C [{Qp,j}] are Banach ∗-subalgebras of LSp(j),

for all p ∈ P, j ∈ Z, in LS. Here, ? in the first ∗-isomorphic relation of (8.10)
is the free-probability-theoretic free product (of [27] and [29]), and ? in the second
∗-isomorphic relation of (8.10) is the pure-algebraic free product (generating noncom-
mutative algebraic free words in Q).

Proof. Let LS be the Banach ∗-subalgebra (8.8) of LS. Since the generator set Q of LS
is a free family, as an embedded sub-structure of LS, we have that

LS ∗-iso= ?
p∈P,j∈Z

C [{Qp,j}] in LS, (8.11)

by (8.3).
Since every free block C [{Qp,j}] of (8.11) is generated by a single self-adjoint

(weighted-semicircular) element Qp,j , every operator T of LS is a limit of linear
combinations of operator products spanned by the family Q of (8.4), which form
noncommutative free reduced words (in the sense of [27] and [29]) in LS. Note
that every (pure-algebraic) free word in Q has a unique free reduced word in LS,
as an operator. So, the ∗-isomorphic relation (8.11) guarantees that

LS ∗-iso= C
[

?
p∈P,j∈Z

{Qp,j}
]
, (8.12)

where the free product (?) in (8.12) is pure-algebraic.
Therefore, by (8.11) and (8.12), the structure theorem (8.10) holds true.
Note now that

Qp,j = pj+1Θp,j ∈ Q, for all p ∈ P, j ∈ Z,

by (8.5), where Θp,j ∈ Θ are the semicircular elements of (8.6). So,

LS def= C[Q] = C [{pj+1Θp,j : Θp,j ∈ Θ}] = C[Θ], (8.13)

in LS. Therefore, the equality (8.9) holds by (8.13).

As a sub-structure of the free Adelic filterization LS, one gets the Banach
∗-probability space, (

LS, τ0 denote= τ0 |LC
)
. (8.14)
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Definition 8.8. Let LS be the Banach ∗-subalgebra (8.8) of LS. Then we call

LS0
denote=

(
LS, τ0) of (8.14),

the (free) semicircular (Adelic sub-)filterization of the free Adelic filterization LS.

Note that, by (8.3) and (8.10), all elements of the semicircular filterization LS
provide possible non-zero free distributions in the free Adelic filterization LS. More
precisely, a free reduced word of LS has its nonzero free distribution, if and only if it
is a free reduced words in Q∪Θ, if and only if it is contained in LS0. Therefore, we
now focus on free probability on the semicircular filterization LS0 of (8.14).

9. TRUNCATED LINEAR FUNCTIONALS τt<s ON LS

In number theory, one of the most interesting topics is finding the number of primes,
or the density of primes, contained in a closed interval [t1, t2] of the real numbers R
(e.g., [11–13] and [19]). Motivated by this theory, we consider “suitable” truncated
linear functionals on our semicircular filterization LS0 of (8.10).

9.1. LINEAR FUNCTIONALS {τ(t)}t∈R on LS

Let LS0 be the semicircular filterization
(
LS, τ0) of the free Adelic filterization LS,

where LS is the Banach ∗-subalgebra (8.8) of LS, satisfying (8.10). We now truncate
τ0 on LS, in terms of a fixed real number t ∈ R.

First, recall and remark that

τ0 = ?
p∈P,j∈Z

τ0
p,j on LS,

by (8.3) and (8.14). So, one can sectionize τ0 in terms of P as follows:

τ0 = ?
p∈P

τ0
p on LS, (9.1)

with
τ0
p = ?

j∈Z
τ0
p,j on LSp, for p ∈ P,

where
LSp

def= ?
j∈Z

C[{Θp,j}] in LS ⊂ LS, (9.2)

for each p ∈ P.
Such a sectionization (9.1) and (9.2) can be done by the structure theorem (8.10)

of LS in LS.
By the very constructions (8.14) and (9.2), one can get the following lemma.

Lemma 9.1. Let LSpl
be ∗-subalgebras (9.2) of the semicircular filterization

LS0, for l = 1, 2. Then LSp1 and LSp2 are free in LS0, if and only if p1 6= p2 in P.
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Proof. The proof of this freeness condition in LS0 is clear by (8.3), (8.14) and (9.2).
Indeed, p1 6= p2 in P, if and only if all free blocks

{
C[{Θp1,j}]

}
j∈Z

of LSp1 , and

those
{
C[{Θp2,j}]

}
j∈Z

of LSp2 are disjoint from each other in LS0, if and only if
LSp1 and LSp2 are free in LS0 by (8.10).

Fix now t ∈ R, and define a new linear functional τ(t) on LS by

τ(t)
def=
{

?
p≤t

τ0
p on ?

p≤t
LSp in LS,

O otherwise,
(9.3)

where τ0
p are the linear functionals (9.1) on the Banach ∗-subalgebras LSp of (9.2)

in LS, for all p ∈ P, and O is the zero linear functional, satisfying O(T ) = 0, for all
T ∈ LS.

By the definition (9.3), one can easily verify that, if t < 2 in R, then the corre-
sponding linear functional τ(t) is defined to the zero linear functional O on LS. From
below, if there is no confusion, we simply write the above conditional definition (9.3)
by

τ(t)
denote= ?

p≤t
τ0
p on LS, (9.4)

for all t ∈ R. For example,

τ(√
2

2

) = O, τ(2.0001) = τ0
2 , and τ(5) = τ0

2 ? τ
0
3 ? τ

0
5 ,

etc., on LS, in the sense of (9.4) representing (9.3).
Theorem 9.2. Let Qp,j ∈ Q, and Θp,j ∈ Θ in the semicircular filterization LS0, for
p ∈ P, j ∈ Z, where Q is the free weighted-semicircular family (8.4) and Θ is the
semicircular family (8.6), generating LS0. Let t ∈ R, and τ(t), the corresponding linear
functional (9.4) on LS. Then

τ(t)
(
Qnp,j

)
=
{
ωnp

2(j+1)cn
2

if t ≥ p,
0 if t < p,

and τ(t)
(
Θn
p,j

)
=
{
ωncn

2
if t ≥ p,

0 if t < p,
(9.5)

for all n ∈ N.

Proof. By the p2(j+1)-semicircularity of Qp,j ∈ Q, and the semicircularity of Θp,j ∈ Θ
in LS0, and by the definition (9.3) or (9.4), one obtains that: if t ≥ p in R, then

τ(t)
(
Qnp,j

)
= τ0

p

(
Qnp,j

)
= τ0

p,j

(
Qnp,j

)

= τ0 (Qnp,j
)

= ωnp
2(j+1)cn

2
,

and
τ(t)
(
Θn
p,j

)
= τ0

p

(
Θn
p,j

)
= τ0

p,j

(
Θn
p,j

)

= τ0 (Θn
p,j

)
= ωncn

2
,

by (9.2) and (9.3), for all n ∈ N.
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If t < p, then

τ(t) = ?
2≤q<p in P

τ0
q , or O, on LS.

So, in such cases,

τ(t)
(
Qnp,j

)
= τ(t)

(
Θn
p,j

)
= 0, for all n ∈ N,

by (9.3). Therefore, the free-momental data (9.5) for the linear functional τ(t) holds.

Definition 9.3. Let LS0 = (LS, τ0) be the semicircular filterization, and let τ(t) be
a linear functionals (9.4) on LS, for t ∈ R. Then the new Banach ∗-probability spaces,

LS(t)
denote=

(
LS, τ(t)

)
, (9.6)

are called the semicircular t-filterizations of LS0, for all t ∈ R.

Note that if t is suitable in the sense that “τ(t) 6= O on LS”, then the
free-probabilistic structure LS(t) of (9.6) is meaningful (or non-trivial).

Notation and Assumption 9.4. (in short, NA 9.4, from below) In the following,
we will say “t ∈ R is suitable”, if the semicircular t-filterization “LS(t) of (9.6) is
meaningful”, in the sense that τ(t) 6= O on LS.

Now, let us consider the following concept.

Definition 9.5. Let (Ak, ϕk) be Banach ∗-probability spaces (or C∗-probability
spaces, or W ∗-probability spaces, etc.), for k = 1, 2. A Banach ∗-probability space
(A1, ϕ1) is said to be free-homomorphic to a Banach ∗-probability space (A2, ϕ2), if
there exists a bounded ∗-homomorphism

Φ : A1 → A2,

such that

ϕ2 (Φ(a)) = ϕ1 (a) ,

for all a ∈ A1. The ∗-homomorphism Φ is called a free-homomorphism.
If Φ is a ∗-isomorphism, then it is called a free-isomorphism; and (A1, ϕ1) and

(A2, ϕ2) are said to be free-isomorphic.



796 Ilwoo Cho and Palle E.T. Jorgensen

By (9.5), we obtain the following free-probabilistic-structural theorem.

Theorem 9.6. Let
LSq = ?

j∈Z
C [{Qq,j}]

be Banach ∗-subalgebras (9.2) of LS, for all q ∈ P, and let t ∈ R be suitable in the sense
of NA 9.4. Construct a Banach ∗-probability space LSt by a Banach ∗-probabilistic
sub-structure of the semicircular filterization LS0,

LSt def= ?
p≤t

(
LSp, τ0

p

)
=
(
?
p≤t

LSp, ?
p≤t

τ0
p

)
(9.7)

where τ0
p = ?

j∈Z
τ0
p,j are in the sense of (9.1), and LSp are in the sense of (9.2) in LS.

Then, for suitable t ∈ R

LSt of (9.7) is free-homomorphic to LS(t). (9.8)

Proof. Let LS(t) be the semicircular t-filterization (9.6) of the semicircular filterization
LS0, and let LSt be a Banach ∗-probability space (9.7), for a fixed suitable t ∈ R.
Define a bounded linear morphism

Φt : LSt → LS(t),

by the canonical embedding map,

Φt(T ) = T in LS(t), for all T ∈ LSt. (9.9)

Then it is a well-defined injective bounded ∗-homomorphism from LSt into LS(t),
by (8.8), (8.11), (9.2) and (9.7).

Therefore, we obtain that

τ(t) (Φ(T )) = τ(t)(T ) = τ0(T ) = τ t(T ),

for all T ∈ LSt, where
τ t = ?

p≤t
τ0
p on LSt,

in the sense of (9.7), by (9.5).
It shows that the Banach ∗-probability space LSt of (9.7) is free-homomorphic to

the semicircular t-filterization LS(t) of (9.6). Therefore, the statement (9.8) holds by
a free-homomorphism Φt of (9.9).

The above theorem shows that the Banach ∗-probability spaces LSt of (9.7) are
free-homomorphic to the semicircular t-filterizations LS(t) of (9.6), for any suitable
t ∈ R.

Corollary 9.7. All free reduced words T of the semicircular t-filterization LS(t),

having non-zero free distributions, are contained in the Banach ∗-probability space LSt
of (9.7), whenever t is suitable. The converse holds true, too.
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Proof. The proof of this characterization is done by (9.3), (9.5), (9.7), (9.8), and (9.9).

So, if T are non-zero-free-distribution-having free reduced words of our semicircular
t-filterization LS(t), then such operators T are regarded as free random variables of
the Banach ∗-probability space LSt of (9.7).

Remark 9.8. Let Fn be the free groups with n-generators, for all

n ∈ N∞>1 = (N \ {1}) ∪ {∞},

and let L(Fn) be the corresponding free group factors (the group von Neumann
algebras generated by Fn, equipped with their canonical traces), for all n ∈ N∞>1.

In [25], Radulescu showed that either (9.10) or (9.11) holds, where

L(Fn) ∗-iso= L(F∞), for all n ∈ N∞>1, (9.10)

L(Fn1)
∗-iso
6= L(Fn2) if and only if n1 6= n2 in N∞>1. (9.11)

We do not know which one holds true at this moment.
In our case, we have similar difficulties to check Lt and L(t) are ∗-isomorphic (and

hence, free-isomorphic) or not. One thing clear now is that LSt is free-homomorphic
to LS(t) by (9.8), for any suitable t ∈ R.

Conjecture 9.9. Let t ∈ R be suitable in the sense of NA 9.4, and assume that there
are more than one primes less than or equal to t. Even though the Banach ∗-algebras
LSt = ?

p≤t
LSp and LS are ∗-isomorphic (which we are not sure either), the Banach

∗-probability spaces LSt and LS(t) are not free-isomorphic.

9.2. TRUNCATED LINEAR FUNCTIONALS τt1<t2 ON LS

In this section, we generalize the semicircular t-filterizations LS(t), for suitable t ∈ R.
Throughout this section, let [t1, t2] be a closed interval in R, for t1 < t2 ∈ R. For
a fixed closed interval [t1, t2], define the corresponding linear functional τt1<t2 on the
Banach ∗-algebra LS by

τt1<t2
def=





?
t1≤p≤t2 in P

τ0
p on ?

t1≤p≤t2
LSp in LS,

O otherwise,
(9.12)

where τ0
p are the linear functionals (9.1) on the Banach ∗-subalgebras LSp of (9.2)

in LS, for p ∈ P.
As in Section 9.1, if there is no confusion, we write the conditional definition (9.12)

of τt1<t2 as
τt1<t2 = ?

t1≤p≤t2 in P
τ0
p on LS. (9.13)
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To make a linear functional τt1<t2 of (9.12) be a non-zero-linear functional on LS,
the interval [t1, t2] must be taken “suitably” in R. For example,

τt1<t2 = O, whenever t2 < 2,

and
τ8<10 = O, τ14<16 = O, and τ 3

7<
3
2

= O, etc.,

but
τ 3

2<8 = τ(8) = τ0
2 ? τ

0
3 ? τ

0
5 ? τ

0
7

and
τ7<14 = τ0

7 ? τ
0
11 ? τ

0
13,

on LS in the sense of (9.13), representing (9.12).
It is not difficult to check that the concept of truncated linear functionals τt1<t2 of

(9.12) covers the definition of the linear functionals τ(t) of (9.3). In particular, if τ(t) is
“suitable” in the sense of NA 9.4, then one may understand

τ(t) = τs<t, for 2 ≥ s < t ∈ R,

with axiomatization:

τp<p = τ0
p on LS, for all p ∈ P ⊂ R,

in the sense of (9.13). Remark that the above axiomatization is only for the case
where p ∈ P.
Definition 9.10. Let [t1, t2] be a given interval in R, and τt1<t2 , the corresponding
linear functional (9.12) on LS. Then we call it the [t1, t2](-truncated)-linear functional
on LS. The Banach ∗-probability space

LSt1<t2
denote= (LS, τt1<t2) (9.14)

is said to be the semicircular [t1, t2](-truncated)-filterization of the semicircular filteri-
zation LS0 = (LS, τ0).

As we discussed in the above paragraphs, a semicircular [t1, t2]-filterization LSt1<t2
of (9.14) is “meaningful”, if t1 < t2 are suitable in R, like in NA 9.4.

Notation and Assumption 9.11. (in short, NA 9.11, from below) In the rest of this
paper, if we write “t1 < t2 are suitable in R,” then it means “LSt1<t2 is meaningful”,
in the sense that: τt1<t2 6= O on LS.

Remark 9.12. In fact, the study of such “suitability” of t1 < t2 in R is to study the
density of primes in [t1, t2] in number theory. e.g., see [11–13] and [19].

If t1 ≤ 2, and if t1 < t2 is suitable in R, then the semicircular [t1, t2]-filterization
LSt1<t2 of (9.14) is identified with the semicircular t2-filterization LS(t2) of (9.6).
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Theorem 9.13. Let t1 ≤ 2, and t2 is suitable in R in the sense of NA 9.4.
(i) LSt1<t2 is not only suitable in the sense of NA 9.11, but also it is free-isomorphic

to LS(t2).

(ii) The Banach ∗-probability space LSt2 of (9.7) is free-homomorphic to LSt1<t2 .
Proof. Suppose t1 ≤ 2, and t2 is suitable in R in the sense of NA 9.4. Then t1 < t2
are suitable in R in the sense of NA 9.11. Since t1 is assumed to be less than or equal
to 2, the linear functional τt1<t2 = τ(t2), by (9.3) and (9.12). So,

LSt1<t2 = (LS, τt1<t2) =
(
LS, τ(t2)

)
= LS(t2).

Therefore, the free-isomorphic relation (i) holds by taking the free-isomorphism as
the identity map on LS.

By (9.8), the Banach ∗-probability space LSt2 of (9.7) is free-homomorphic to the
semicircular t2-filterization LS(t2). Therefore, LSt2 is free-homomorphic to LSt1<t2 ,
by (i), i.e., the statement (ii) holds.

The above theorem characterizes the free-probabilistic structures for LSt1<t2 ,
whenever t1 ≤ 2, and t2 is suitable, by (i) and (ii). So, we restrict our interests to the
cases where t1 ≥ 2 in R.
Theorem 9.14. Let 2 ≤ t1 < t2 be suitable in R, and let LSt1<t2 be the semicircular
[t1, t2]-filterization of (9.14). Then the Banach ∗-probability space

LSt1<t2 = ?
t1≤p≤t2 in P

(
LSp, τ0

p

)
=
(

?
t1≤p≤t2

LSp, ?
t1≤p≤t2

τ0
p

)
(9.15)

is free-homomorphic to LSt1<t2 in the semicircular filterization LS0. i.e.,
LSt1<t2 of (9.15) is free-homomorphic to LSt1<t2 . (9.16)

Proof. Let LSt1<t2 be in the sense of (9.15) in LS0, i.e.,

LSt1<t2 =
(

?
t1≤p≤t2

LSp, ?
t1≤p≤t2

τ0
p

)
,

is a free-probabilistic sub-structure of the semicircular filterization LS0.
By (9.14), one can define the canonical embedding map Φ from LSt1<t2 into LS,

satisfying
Φ(T ) = T, for all T ∈ LSt1<t2 .

For any T ∈ LSt1<t2 , one can get that
τ t1<t2(T ) = τ0(T ) = τt1<t2(T ).

Therefore, the Banach ∗-probability space LSt1<t2 is free-homomorphic to LSt1<t2
in LS, whenever 2 ≤ t1 < t2 are suitable in R. Therefore, the relation (9.16) holds.

Note again that we are not sure LSt1<t2 and LSt1<t2 are free-isomorphic or not at
this moment. But if the conjecture of Section 9.1 is positive, then they may not be
free-isomorphic.
Corollary 9.15. Let T be a free reduced word of the semicircular [t1, t2]-filterization
LSt1<t2 , and assume that the free distribution of T is not the zero free distribution.
Then T is a free random variable of the Banach ∗-probability space LSt1<t2 of (9.15).
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10. LINEAR FUNCTIONALS τ+
t<s on LS UNDER TRUNCATION ON PRIMES

Throughout this section, let LS0 =
(
LS, τ0) be the semicircular filterization of the free

Adelic filterization LS, and assume that t < s be arbitrarily fixed suitable quantities
of R in the sense of NA 9.11. Different from the truncated linear functionals (9.12),

τt<s = ?
t≤p≤s in P

τ0
p on LS,

(in the sense of (9.13)), we here introduce and consider a new type of the linear
functionals τ+

t<s defined by

τ+
t<s

def=





∑
t≤p≤s in P

τ0
p on ⊕

t≤p≤s
LSp in LS,

O otherwise,
(10.1)

where τ0
q = ?

k∈Z
τ0
q,k are the linear functionals (9.1) on the Banach ∗-subalgebra LSq of

(9.2) in LS0, for all q ∈ P, where “⊕” is the direct product of Banach ∗-algebras.
If there is no confusion, we write the conditional definition (10.1) simply as

τ+
t<s =

∑

t≤p≤s in P
τ0
p on LS. (10.2)

Definition 10.1. Let τ+
t<s be a linear functional (10.1) on LS, for suitable t < s ∈ R

in the sense of NA 9.11. Then it is called the [t, s]-truncated “additive” linear functional
on LS. And the corresponding Banach ∗-probability space,

LS+
t<s

denote= (LS, τ+
t<s), (10.3)

is said to be the [t, s](-truncated)-(+)(-semicircular)-filterization of LS0.
By the definition (10.1), two Banach ∗-probability spaces, the [t, s]-filterization

LSt<s of (9.14), and the [t, s]-(+)-filterization LS+
t<s of (10.3) are different

free-probabilistic objects in the semicircular filterization LS0, in general. More precisely,
one can get the following result.
Theorem 10.2. Let LSt<s be the [t, s]-filterization (9.14), and let LS+

t<s be the
[t, s]-(+)-filterization (10.3), for suitable t < s in R.

(i) If there are multi-primes in [t, s], then LSt<s and LS+
t<s are not free-homomorphic.

(ii) If [t, s] contains only one prime p, then LSt<s and LS+
t<s are free-isomorphic.

Proof. First of all, let us prove the statement (ii). Suppose t < s are suitable in R,
and assume that p ∈ P is the only prime satisfying

t ≤ p ≤ s.

Then, by the definitions (9.12) and (10.1), we have

τt<s = τp<p = τ0
p = τ+

t<s on LS,
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in the sense of (9.13) and (10.2), where τp<p is axiomatized to be τ0
p on LS in the

sense of (9.4).
It shows that

LSt<s = (LS, τ0
p ) = LS+

t<s.

Therefore, if p is the only prime in [t, s], then LSt<s and LS+
t<s are free-isomorphic

in the semicircular filterization LS0, with a free-isomorphism, the identity map on LS.
Thus, the statement (ii) holds.

Now, assume that there are N -many primes q1, . . . , qN are contained in [t, s], where
N > 1 in N. Thus,

τt<s = N
?
k=1

τ0
qk
, and τ+

t<s =
N∑

k=1
τ0
qk
,

on the Banach ∗-algebra LS in the sense of (9.13), respectively, (10.2).
Take an arbitrary free reduced word T with its length-n,

T = Qn1
p1,j1

Qn2
p2,j2

. . . Qnn
pn,jn

(10.4)

of LS0 in the free weighted-semicircular family Q, for 1 < n ∈ N, where either

(p1, . . . , pn) , or (j1, . . . , jn)

consists of “mutually distinct” p1, . . . , pn in P, respectively, consists of “mutually
distinct” j1, . . . , jn in Z, for n1, . . . , nn ∈ N. Also, for convenience, assume further that

p1, . . . , pn ∈ {q1, . . . , qN}, (10.5)

and
n1, . . . , nn ∈ 2N = {2n : n ∈ N},

for 1 < n ≤ N in N.
For any ∗-homomorphisms Ω from LSt<s to LS+

t<s (i.e., for any ∗-homomorphisms
Ω on LS), the corresponding images Ω(T ) of the free reduced word T of (10.4) would
be the free reduced word T ′ with its length-n′, where

n′ ≤ n ≤ N in N.

One may write this image T ′ of T as

T ′ = Qk1
r1,i1

Qk2
r2,i2

. . . Q
kn′
rn′ ,in′ , (10.6)

for r1, . . . , rn′ ∈ P, i1, . . . , in′ ∈ Z, and k1, . . . , kn′ ∈ N, as a free reduced word of LS.
Observe now that if T is in the sense of (10.4), then

τt<s(T ) =
n∏

k=1

(
p
nk(jk+1)
k cnk

2

)
6= 0. (10.7)
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by (10.5), because all factors of T are mutually free from each other; meanwhile, if T ′
is in the sense of (10.6), then

τ+
t<s (T ′) =

{
0 if n′ > 1,∑N
l=1 δql,r1ωk1q

k1(i1+1)
l c k1

2
if n′ = 1, (10.8)

by (10.1).
So, LSt<s is not free-homomorphic to LS+

t<s by (10.7) and (10.8).
Similarly, let us take a free reduced word T of (10.4), now in the [t, s]-(+)-

-filterization LS+
t<s, satisfying (10.5). Then, since N > 1 in N,

τ+
t<s(T ) = 0,

more precisely,

τ+
t<s(Tn) = τ+

t<s ((T ∗)n) = τ+
t<s (T s1T s2 . . . T sn) = 0, (10.9)

for all (s1, . . . , sn) ∈ {1, ∗}n, for all n ∈ N. It shows that, as an element of LS+
t<s,

the free reduced word T, whose length is N > 1, follows the zero free distribution.
For any ∗-homomorphism from LS+

t<s to LSt<s, the images T ′ of them (in the sense
of (10.6), as elements of LSt<s) satisfy

τt<s (T ′) = δ(q1,...,qN :r1,...,rn′ )

n′∏

l=1

(
ωkl

r
kl(il+1)
l c kl

2

)
, (10.10)

by (10.7), where

δ(q1,...,qN :r1,...,rn′ ) =
{

1 if r1, . . . , rn′ ∈ {q1, . . . , qN},
0 otherwise.

The formulas (10.9) and (10.10) demonstrate that LS+
t<s is not free-homomorphic

to LSt<s.
Therefore, the [t, s]-filterization LSt<s and the [t, s]-(+)-filterization LS+

t<s are not
free-homomorphic from each other, whenever there are multi-primes in [t, s]. So, the
statement (ii) of this theorem holds true.

By (10.1), we obtain a following free-homomorphic relation.
Theorem 10.3. Let LSq be in the sense of (9.2) in the semicircular filterization
LS0, for q ∈ P, and let

P[t,s] = P ∩ [t, s], (10.11)
for suitable t < s ∈ R. Define a Banach ∗-probabilistic sub-structure LS[t,s] of LS0 by

LS[t,s]
def=


 ⊕
p∈P[t,s]

LSp, τ[t,s] =
∑

p∈P[t,s]

τ0
p


 . (10.12)

Then LS[t,s] of (10.12) is free-homomorphic to the [t, s]-(+)-filterization LS+
t<s, in LS.
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Proof. Let LS[t,s] be in the sense of (10.12) embedded in the semicircular filterization
LS0. Define now a bounded linear transformation

Ψ : LS[t,s] → LS+
t<s

by the canonical embedding map,

Ψ(T ) = T in LS+
t<s, for all T ∈ LS[t,s]. (10.13)

For any T ∈ LS[t,s], one has that

τ+
t<s (Ψ(T )) = τ+

t<s (T ) = τ+
t<s

(
⊕

q∈P[t,s]
Tq

)

since T = Ψ(T ) ∈ LS[t,s] ⊂ LS+
t<s, and hence, there exist unique Tq ∈ LSq, for all

q ∈ P[t,s], such that T = ⊕
q∈P[t,s]

Tq, and hence, the above formula goes to

=
∑

q∈P[t,s]

τ0
q (Tq) =


 ∑

q∈P[t,w]

τ0
q



(
⊕

q∈P[t,s]
Tq

)

= τ[t,s](T ),

(10.14)

by (10.11) and (10.12). Therefore, the ∗-homomorphism Ψ of (10.13) is free-
-distribution-preserving by (10.14). Equivalently, it is a free-homomorphism.

11. APPLICATION: CIRCULARITY ON LS0,LSt<s, and LS+
t<s

Throughout this section, we use same definitions, and notations introduced in previ-
ous sections. Let LS0 = (LS, τ0) be the semicircular filterization in the free Adelic
filterization LS, and let t < s be suitable in R in the sense of NA 9.11, and

LSt<s = (LS, τt<s), and LS+
t<s = (LS, τ+

t<s)

are the [t, s]-filterization (9.14), respectively, the [t, s]-(+)-filterization (10.3) of LS0.
In this section, we apply our main results of Sections 8, 9 and 10 to the case where

we have the operators X ∈ LS,

X = 1√
2

(Θp1,j1 + iΘp2,j2) , (11.1)

where i =
√
−1 in C,

Θpl,jl
= 1
pjl+1
l

Qpl,jl
∈ Θ, for all l = 1, 2,

and where either
p1 6= p2 ∈ P, or j1 6= j2 ∈ Z, (11.2)

where Θ is the free semicircular family (8.6) generating LS0.
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By the condition (11.2), the summands Θp1,j1 and iΘp2,j2 of the operators X of
(11.1) are free in the semicircular filterization LS0.

Definition 11.1. Let (A,ψ) be an arbitrary topological ∗-probability space, and
let s1 and s2 be semicircular elements in (A,ψ). Assume these two semicircular
elements s1 and s2 are free in (A,ψ). Then the free random variable

x = 1√
2

(s1 + is2) ∈ (A,ψ), (11.3)

is called the circular element induced by s1 and s2 in (A,ψ) (e.g., [21, 22, 24] and [29]).
The free distributions of such circular elements x of (11.3) are called the circular law.

The circular law is characterized by the very semicircularity under free sum
(e.g., [21, 22] and [24]). In particular, the circular law is characterized by the
joint free-moments of a circular element x of (11.3), and its adjoint x∗ under
identically-free-distributedness, since x is not self-adjoint in A, i.e.,

x∗ = 1√
2

(s1 − is2) 6= x in (A,ψ).

Recall that two free random variables al of topological ∗-probability spaces (Al, ψl),
for l = 1, 2, are said to be identically free-distributed, if

ψ1 (ar1
1 a

r2
1 . . . arn

1 ) = ψ2 (ar1
2 a

r2
2 . . . arn

2 ) , (11.4)

for all (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N. For instance, if a1 and a2 are self-adjoint
in A1, respectively, in A2, then they are identically free-distributed, if and only if

ψ1(an1 ) = ψ2(an2 ), for all n ∈ N

(e.g., [1] and [29]).
Note that the semicircular law, and the circular law are characterized under

identically free-distributedness universally (different from weighted-semicircular laws).
i.e., “all” circular elements (resp., “all” semicircular elements) have the same free
distributions, the circular law (resp., the semicircular law).

11.1. CIRCULARITY ON LS0

Let X be an operator (11.1), satisfying the condition (11.2) in the semicircular
filterization LS0. Then it is a circular element in LS0 by (11.3).
Proposition 11.2. Let Θp1,j1 ,Θp2,j2 ∈ Θ be semicircular elements of LS0, where
either

p1 6= p2 in P, or j1 6= j2 in Z.

Then the operator X,
X = 1√

2
(Θp1,j1 + iΘp2,j2) ∈ LS0 (11.5)

is a circular element in LS0.
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Proof. Suppose Θp1,j1 ,Θp2,j2 ∈ Θ are semicircular elements of LS0, and the above
condition is satisfied. Then, these two semicircular elements are free in LS0. So, by
the circularity (11.3), the operator X of (11.5) is circular in LS0.

11.2. CIRCULARITY ON LS0 IN LSt<s
Let t < s be suitable real numbers in R under NA 9.11, and LSt<s = (LS, τt<s),
the corresponding [t, s]-filterization of the semicircular filterization LS0. Let X be
an operator (11.1) satisfying the condition (11.2) in the Banach ∗-algebra LS, and let

P[t,s] = P ∩ [t, s].

Before considering the free-distributional data of X in LSt<s, let us introduce the
following concept.
Definition 11.3. Let (A,ψ) be an arbitrary topological ∗-probability space, and
suppose x ∈ (A,ψ) is “not” self-adjoint. We will say that the free distribution of x is
followed by the semicircular law, if

ψ (xr1xr2 . . . xrn) = ωncn
2
,

for all (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N.

Suppose a free random variable x is not self-adjoint in a topological ∗-probability
space (A,ψ). Then it cannot be a semicircular element by (7.5), (7.8) and (7.9). But,
does a free random variable x whose free distribution is followed by the semicircular
law in the above sense exist? The following theorem not only characterizes the free
distribution of an operator X of (11.1) in the [t, s]-filterization LSt<s, but also provides
the positive answer of this question.
Theorem 11.4. Let X be a circular element (11.5) in LS0, and let P[t,s] = P ∩ [t, s],
where [t, s] is a closed interval of R. Then the following assertions hold.
(i) If p1, p2 ∈ P[t,s], then X is circular in the [t, s]-filterization LSt<s.
(ii) If p1 ∈ P[t,s], and p2 /∈ P[t,s], then the free distribution of

√
2X is followed by the

semicircular law in LSt<s.
(iii) If p1 /∈ P[t,s], and p2 ∈ P[t,s], then the free distribution of −i

√
2X is followed by

the semicircular law in LSt<s.
(iv) If p1 /∈ P[t,s], and p2 /∈ P[t,s], then X has the zero free distribution in LSt<s.

Proof. Suppose first that
p1, p2 ∈ P[t,s].

Then the summands Θpl,jl
are free in LSt<s, by Lemma 9.1, for all l = 1, 2. So, by

(9.16) and (11.5), the operator X is circular in the [t, s]-filterization LSt<s, too. So,
the statement (i) holds.

Assume that
p1 ∈ P[t,s], and p2 /∈ P[t,s],

and regard X as a free random variable of LSt<s.
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Now, let
T =

√
2X = Θp1,j1 + iΘp2,j2 ∈ LSt<s.

Observe that if there are free reduced words

Wp2,j2 = Θn1
q1,j1

. . .Θn
p2,j2 . . .Θ

nN
q2,j2

∈ LSt<s,

containing at least one free-factor Θn
p2,j2

for n ∈ N, then

τt<s (Wp2,j2) = 0, for all N ∈ N,

by (9.12) and (9.13). Therefore, one can get that

τt<s (Tn) = τ0
p1

(
Θn
p1,j1

)
= τt<s ((T ∗)n) ,

and
τt<s (T r1T r2 . . . T rn) = τ0

p1

(
Θn
p1,j1

)
,

for all mixed (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N.
Note that

Θp1,j1 ∈ LSp1 ⊂ LSt<s
free-homo
⊆ LS0,

where “
free-homo
⊆ ” means “being free-homomorphic”, and hence, it is semicircular. There-

fore, the free distribution of T =
√

2X is followed by the semicircular law in LSt<s,
by (11.2). (Remark that this operator T is not semicircular in LSt<s, but, the free
distribution of T is followed by the semicircular law.) It shows that the statement (ii)
holds.

Let p1 /∈ P[t,s] and p2 ∈ P[t,s], and let

S = −
√

2iX = −iΘp1,j1 + Θp2,j2 ∈ LSt<s.

Then, similar to (11.2), one obtains that

τt<s (Sn) = τ0
p2

(
Θn
p2,j2

)
= τt<s ((S∗)n) , (11.6)

and
τt<s (Sr1Sr2 . . . Srn) = τ0

p2

(
Θn
p2,j2

)
,

for all mixed (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N. So, like in the proof of (ii), the free
distribution of S = −

√
2iX is followed by the semicircular law in LSt<s, by (11.6).

Thus, the statement (iii) holds.
Finally, assume that

p1 /∈ P[t,s], and p2 /∈ P[t,s].

Then X /∈ LSt<s, where

LSt<s =
(

?
q∈P[t,s]

LSq, ?
q∈P[t,s]

τ0
q

)

is the Banach ∗-probability space (9.15) in LS. Therefore, by the free-homomorphic
relation (9.16), this operator X has the zero free distribution in the [t, s]-filterization
LSt<s. Therefore, the statement (iv) holds true.
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The above theorem illustrates the difference between original free-distributional
data on the semicircular filterization LS0, and those on the [t, s]-filterization LSt<s
under suitable truncations for [t, s]. In particular, the circularity (11.5) of LS0 is
affected by the truncations for [t, s] by (i)–(iv).

The following corollary is a direct consequence of the above theorem.

Corollary 11.5. Let X = 1√
2 (Θp1,j1 + iΘp2,j2) be a circular element (11.5) of LS0.

Suppose t < s are suitable in R, and assume either

p1 /∈ P[t,s], or p2 /∈ P[t,s] in P.

Then X is not circular in LSt<s. i.e., the circular law is distorted by the truncation
for [t, s].

Proof. Let X ∈ LS0 be a circular element (11.5). Assume that either

p1 /∈ P[t,s], or p2 /∈ P[t,s] in P.

Then X is not circular in LSt<s by (ii)–(iv) of Theorem 11.4.

11.3. CIRCULARITY OF LS0 in LS+
t<s

Let LS+
t<s be the [t, s]-(+)-filterization of the semicircular filterization LS0, for suitable

t < s in R under NA 9.11, and let X be a circular element (11.5) of the semicircular
filterization LS0 under (11.2).

Lemma 11.6. Let X = 1√
2 (Θp1,j1 + iΘp2,j2) be a circular element (11.5) in LS0.

If we regard X as a free random variable of the [t, s]-(+)-filterization LS+
t<s, then one

obtains the following free-distributional data.

(i) If p1, p2 ∈ P[t,s] = P∩ [t, s], then

τ+
t<s (Xn) = ωn

(
1√
2

)n
(1 + in) cn

2
,

and

τ+
t<s ((X∗)n) = ωn

(
1√
2

)n
(1 + (−i)n) cn

2
,

for all n ∈ N.
(ii) If p1 ∈ P[t,s], and p2 /∈ P[t,s], then

τ+
t<s (Xn) = τ+

t<s ((X∗)n) = ωn

(
1√
2

)n
cn

2
,

for all n ∈ N.
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(iii) If p1 /∈ P[t,s] and p2 ∈ P[t,s], then

τ+
t<s(Xn) = ωn

(
i√
2

)n
cn

2
,

and

τ+
t<s ((X∗)n) = ωn

(−i√
2

)n
cn

2
,

for all n ∈ N.
(iv) If p1 /∈ P[t,s], and p2 /∈ P[t,s], then X has the zero free distribution

on LS+
t<s.

Proof. Suppose p1, p2 ∈ P[t,s]. Then, by (10.12), (10.13) and (10.14),

τ+
t<s (Xn) = τ[t,s]

((
1√
2

(Θp1,j1 ⊕ iΘp2,j2

)n)

where τ[t,s] =
∑

q∈P[t,s]

τ0
q is in the sense of (10.12)

=
(

1√
2

)n
τ[t,s]

((
Θn
p1,j1 ⊕ inΘn

p2,j2

))

=
(

1√
2

)n (
τ0
p1

(
Θn
p1,j1

)
+ inτ0

p2

(
Θn
p2,j2

))

=
(

1√
2

)n (
ωncn

2
+ inωncn

2

)

by the semicircularity of Θpl,jl
in LS0 (and hence, in LS+

t<s)

= ωn

(
1√
2

)n
(1 + in)cn

2
,

for all n ∈ N.
Similarly,

τ+
t<s ((X∗)n) =

(
1√
2

)n
τ[t,s] ((Θp1,j1 ⊕ (−iΘp2,j2))n)

=
(

1√
2

)n (
τ0
p1

(
Θn
p1,j1

)
+ (−i)nτ0

p2

(
Θn
p2,j2

))

= ωn

(
1√
2

)n
(1 + (−i)n) cn

2
,

for all n ∈ N. Therefore, the statement (i) holds.
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Suppose p1 ∈ P[t,s], and p2 /∈ P[t,s]. Then

τ+
t<s (Xn) = τ[t,s]

((
1√
2

(Θp1,j1 + iΘp2,j2)
)n)

=
(

1√
2

)n
τ[t,s]

(
Θn
p1,j1

)

=
(

1√
2

)n
τ0
p1

(
Θn
p1,j2

)
= ωn

(
1√
2

)n
cn

2

= τ+
t<s ((X∗)n) ,

for all n ∈ N. Thus, the statement (ii) holds.
Assume now that p1 /∈ P[t,s], and p2 ∈ P[t,s]. Then, similar to the proof of (ii), one

can get that

τ+
t<s(Xn) = ωn

(
i√
2

)n
cn

2
,

and
τ+
t<s ((X∗)n) = ωn

(−i√
2

)n
cn

2
,

for all n ∈ N. It guarantees the statement (iii) holds true.
Finally, assume that p1 /∈ P[t,s], and p2 /∈ P[t,s]. Then, by (10.13) and (10.14),

the operator X has the zero free distribution on LS+
t<s. Equivalently, the statement

(iv) holds.

By the above lemma, one immediately obtains the following result.
Theorem 11.7. Let X be a circular element (11.5) of the semicircular filterization
LS0. If X is regarded as a free random variable of the [t, s]-(+)-filterization LS+

t<s,
then X is not circular in LS+

t<s, i.e.,

X cannot be a circular element in LS+
t<s. (11.7)

Proof. Let X be given as above in LS+
t<s. Then it cannot be circular in LS+

t<s,
by (i)–(iv) of Lemma 11.6. So, the statement (11.7) is proven.

It shows that a circular element X of the semicircular filterization LS0 cannot be
circular in all [t, s]-(+)-filterizations LS+

t<s, whenever −∞ < t < s <∞ in R.

11.4. DISCUSSION

In Sections 11.1, 11.2 and 11.3, we applied the main results of Sections 8, 9 and 10
to circular elements of the semicircular filterization LS0. Especially, the distorted
circularity is observed in LSt<s, and in LS+

t<s, where t < s are suitable in the sense
of NA 9.11, i.e., the circularity (11.5) of LS0 is affected by our truncations in LSt<s by
(i)–(iv) of Theorem 11.4, meanwhile, it is distorted by truncations in LS+

t<s, by (11.7).
In the middle of studying such distortions, the existence of a certain type of

free random variables, whose free distributions are followed by the semicircular law,
is shown (in Section 11.2).
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Proposition 11.8. There exist a topological ∗-probability space (A,ψ), and free ran-
dom variables x ∈ (A,ψ), such that:

(i) x is not self-adjoint (and hence, not semicircular),
(ii) the free distribution of x is followed by the semicircular law in the sense that:

ψ (xr1xr2 . . . xrn) = ωncn
2
, (11.8)

for all (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N.

Proof. The proof is done by construction. Let

LSt<s = (LS, τt<s)

be the [t, s]-filterization of the semicircular filterization LS0, where t < s are suitable
in R. Let us take a free random variable

T = Θp1,j1 + tΘp2,j2

in LSt<s, for t ∈ C, where Θpl,jl
∈ Θ are two distinct (and hence, free) semicircular

elements in LS0, for l = 1, 2, and

p1 ∈ P[t,s] = P ∩ [t, s], and p2 /∈ P[t,s].

Then, similar to the proofs of (ii) and (iii) of Theorem 11.4, the free distributions
of T are characterized by the joint free moments of {T, T ∗} satisfying

τt<s (T r1T r2 . . . T rn) = ωncn
2
,

for all (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N.
It guarantees the existence of non-self-adjoint free random variables whose free

distributions are followed by the semicircular law.

The above proposition provides an interesting class of free random variables of
topological ∗-probability spaces. By the Möbius inversion of [27], one can get the
following equivalent result of the above proposition.

Corollary 11.9. There exist topological ∗-probability spaces (A,ψ), and free random
variables x ∈ (A,ψ), such that

(i) x is not self-adjoint,
(ii) the free distribution of x is followed by the semicircular law in the sense that:

kψn (xr1 , . . . , xrn) =
{

1 if n = 2,
0 otherwise,

(11.9)

for all (r1, . . . , rn) ∈ {1, ∗}n, for all n ∈ N, where kψn (·) is the free cumulant on
A in terms of the linear functionals ψ.

Proof. The proof of (11.9) is done by (11.8) under the Möbius inversion of [27].
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