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Abstract. In this work we propose a novel application of Partial Differential Equations
(PDEs) inpainting techniques to two medical contexts. The first one concerning recovering of
concentration maps for superparamagnetic nanoparticles, used as tracers in the framework
of Magnetic Particle Imaging. The analysis is carried out by two set of simulations, with
and without adding a source of noise, to show that the inpainted images preserve the main
properties of the original ones. The second medical application is related to recovering data of
corneal elevation maps in ophthalmology. A new procedure consisting in applying the PDEs
inpainting techniques to the radial curvature image is proposed. The images of the anterior
corneal surface are properly recovered to obtain an approximation error of the required
precision. We compare inpainting methods based on second, third and fourth-order PDEs
with standard approximation and interpolation techniques.
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1. INTRODUCTION

Medical and biomedical experts often draw their conclusions by the analysis of tomo-
graphic or 2D-3D images acquired by various techniques and methodologies. Sometimes,
these images may require reconstruction of empty areas, as they were missing data for
different reasons. In the framework of image restoration, this task is often achieved by
means of some mathematical techniques and algorithms, globally collected under the
name of inpainting. Inpainting techniques are mainly used in restoration of old paintings
by museum artists, in recovering scratches in a camera picture, in altering scenes
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in photographs, or in restoration of motion pictures (the reader can refer to [5,13] and
references therein). In this work we consider PDEs-based digital inpainting methods
which are usually applied on images with large-scale missing domains, mimicking the
basic techniques of professional art restorators [3,50]. They were first introduced in
the pioneering works of Bertalmio et al. [2,3], where damaged areas of an image are
restored by means of transport equations, which smoothly propagates broken isophote
lines inside the inpainting region.

We review and implement six PDEs inpainting methods: three of second order,
one of third order and two of fourth order. These methods are compared to two
numerical techniques available in the literature: the automated smoothing procedure,
based on a penalized least squares method, implemented in the function inpaintn [22];
the spline interpolation algorithm specified in the MATLAB ® griddata function.

We applied and tested the six PDEs inpainting techniques in the following two
medical contexts:

1. Magnetic Particle Imaging (MPI), to recover concentration maps of superpara-
magnetic nano-particles. MPI is a tracer-based method for recovering medical
images. The spatial distribution c(x) of a tracer material injected inside the volume
under investigation is computed applying external magnetic fields to the field of
view, and then numerically processing and analyzing the signal s(t) induced by
the material. Similarly to other imaging methods such as PET or SPECT, MPI
assumes superparamagnetic nanoparticles as the tracer material. Consequently, the
MPI reconstruction problem consists in deriving the nanoparticles concentration ¢
from the induced signal s. The pioneering work in MPI dates back to 2005, when
Gleich and Weizenecker introduced this new medical imaging technique in [24].
We will show that inpainting based on PDEs is a useful technique to solve in
a novel way the MPI reconstruction problem. The nanoparticles distribution ¢(x)
applies only to a subset of image points. Concentrations in the remaining image
points have to be determined by some interpolation or approximation algorithms.
Then the inpainting approach can be used as an approximant to reconstruct final
MPI images. In this work we test the PDEs inpainting techniques on standard
“phantom” objects presenting different geometric features, which are typically used
for testing MPI devices in preclinical investigations (see for example [24,32]). The
analysis carried out by two set of simulations in the MPI framework, with and
without adding a source of noise, shows that the inpainted images preserve the
main properties of the original ones.

2. Ophthalmology, to reconstruct elevation maps of the anterior surface of human
corneas from real data given in output by the corneal topographer PrecisioHDT™
of the iVis Technologies [30]. In the treatment of refractive problems, 3D mapping
of the anterior surface of a human cornea, generated by a corneal topographer, is
specifically designed for diagnosis and custom vision surgery. Sometimes it occurs
that some areas of the detected domain are missed. Usually, these areas occur near
the boundary of the scanned region, because of acquisition problems related to
the laser technology or of random measuring errors when, for instance, the patient
closes his eyes or moves his pupils. This motivates our idea herien proposed of
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applying inpainting techniques based on PDEs for recovering missed data and filling
the empty areas of the scanned domain. The inpainting techniques applied to the
elevation data did not give satisfactory results as expected. Thus we propose a new
approach based on radial curvature that improves the results on the reconstruction
of the elevation maps.

Some recent applications of inpainting techniques to medical images recovering
and reconstruction can be found in the literature [7]. Nevertheless, the use of PDEs
digital inpainting in the medical frameworks mentioned above constitutes a novelty.

The article is organized as follow. After a brief review of PDEs inpainting techniques
in Section 2, their application to the medical problems mentioned above is discussed in
Sections 3 and 4. Some tests and simulations to validate the use of these PDEs
inpainting techniques have been also performed and compared to other approximation
methods. Finally, Section 5 concludes.

The achieved results are of comparable accuracy with those derived by standard
and well tested numerical techniques usually applied in medical field, even better in
the presence of noise or when, in the MPI reconstruction problem, Brownian relaxation
for the superparamgnetic material is considered.

2. BRIEF REVIEW OF INPAINTING MODELS BASED ON PDES

As observed in the Introduction, the inpainting technique has been proposed and
numerically implemented in several ways. With regard to digital inpainting methods
based on PDEs, in the pioneering work of Bertalmio et al. [3] the PDE governing the
algorithm was given by the following transport equation:

Viu-VAu=0, (2.1)

where the gradient Vv = (=9, u, d,u) indicates the isophote directions of an image w.
The Laplacian Awu takes the role of a smoothness estimator. This idea was further
developed in [2], where the smooth propagation along the isophote lines was mathe-
matically reformulated by means of the PDE analogous to the 2D stationary Euler
equation of the classical fluid dynamics.

One of the novelties in Bertalmio’s et al. approach was the use of higher-order
PDEs for inpainting, against previous works concerning digital image processing that
mainly treat second-order PDEs [1,14,37,47,48]. Caselles et al. [14] singled out a set
of elliptic equations to the approximation problem from data on curves and/or points,
following the axiomatic approach previously proposed in [1] for the multiscale image
processing. The authors recovered well known PDEs, such as the Laplace’s and the
p-Laplace’s equation, and anisotropic diffusions such as Total Variation (TV) and, in
particular, Absolute Minimal Lipschitz Extension (AMLE) equation, which admits
a unique viscous solution with bounded gradient in most applicative problems. Shen
and Chan [53] considered constrained TV equation for their variational approach to
disocclusion, derived by the denoising model of Rudin and Osher [48] and Rudin et al.
[47], with solutions in the space of bounded variation (BV) functions. (Disocclusion is
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the ability to reconstruct partially occluded objects in a visual perception; it is often
associated with inpainting, aiming at similar tasks). Generally anisotropic diffusions
as TV equation present some advantage with respect to the Laplace’s equation, being
their solutions able to preserve edges in disocclusion and denoising/edge-detection
problems as well [46,48,53]. Nevertheless, as a second-order model, TV equation suffers
of artificial corners — i.e. rump effect — and limited connectivity between distant edges
in the reconstructed image. In this respect TV inpainting model significantly deviates
from typical human attitudes in visual perception, as pointed out by the Gestalt school
of psychology (Kanizsa [31]). To overcome these drawbacks, Shen and Chan [52] and
Chan et al. [15] also considered higher-order inpainting/disocclusion PDEs models:
the curvature driven diffusion (CDD) and the Fuler’s elastica models, respectively.

Other contributions to inpainting arise from segmentation models (see [43] for
an overview of such topics), aiming at a segmented reconstruction of inpainting
domains. They are based on the minimization of some functionals F'. Denoted by
Q C R? the image domain, D C ) the inpainting sub-domain and f the known image
on Q\ D, the general expression of F' acting on an “object function” u and a set of
edges I', is the following

Flu,T) = p /r (u(@). Du(@)...... D" u()) da + o |T|
O\T

+ o / lu(z) — f(z)[*dz,

Q\D

(2.2)

where D() denotes the order of derivative of u. The parameter g is a constant usually
called fidelity parameter, p and « are constants, |T'| is the one dimension Hausdorff
measure of the set I, while 7(-) is a local function of the derivatives of u (u usually lies
in the space of BV functions on €2). For example, 7(-) can be defined as [Vu|® [21,53]
in the inpainting model derived by the Mumford-Shah segmentation model [44], or
|Au|® [13] in the inpainting model based on the Blake-Zisserman image model [6].
Notice that the main difference occurring from segmentation models to inpainting
models lies in the last integral on the right-hand side of (2.2) — the fidelity term —
which is now defined onto the complementary set of the inpainting sub-domain D
instead of the whole image domain ).

To overcome the limitations related to low-order models, Esedoglu and Shen [21]
suggested to add a curvature term to |T'| on the right-hand side of (2.2). The inpainting
Mumford-Shah-Euler (MSE) image model reads as

Fysep(u,T) =u / |Vul* (z)der/(aJrﬂkQ(s)) ds
o\r r
20 [ fu(w) - f(a) ds,
O\D

where the parameter [ is a constant and k(s) is the curvature function.
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The gradient descent for a MSE approximating functional — resulting from
a De Giorgi conjecture [19] about the I'-convergence of elliptic functionals — reads [21]

Oyu =V - (2*Vu) + Aox(Q\ D) (f —u), (2.3)
Oz =—|Vu|* 2 — (oz + %W%z)) (25Az - W4£Z)) (2.4)

+48A (25Az - W4iz))

The boundary conditions are given by du/dv = 0z/0v = 090g/0v = 0, with
g =2eAz —W'(z)/(4¢), and v being the normal vector of the frontier, say 9, of Q.
Here x(2\ D) denotes the indicator function on the set 2\ D, and z is an “edge
signature function”, i.e. a function that nearly equals 1, except for a small tubular
neighborhood of I' of size € where it is close to zero. Finally, W is a suitable function
of z.

Note that if we get rid of the first two terms on the right-hand side of (2.4), we
get the Cahn—Hilliard equation. The idea of Bertozzi et al. [5] was to propose a shape
inpainting model (the BEGCH model) — i.e. working only for binary images — based
just on the Cahn—Hilliard equation term plus the fidelity term, that is

€

Vu-v=V (Au) - v=0 on 0f.

Ou=~A(eAu~ T L) 4 X (Q\ D) (f ~u) inQ (2.5)

The function W is wusually given by the double-well potential, namely
W(u) = (u—1)%(u+1)2 or W(u) = u?(u — 1)2. Nevertheless, a combination of loga-
rithmic terms instead of polynomials can define a different function W, as proposed
n [16]. The BEGCH model presents some advantages over the I'-convergence approxi-
mation of the MSE inpainting model. In particular, it results to be up to an order
of O(Nlog(N)), where N is the number of pixel interested by the inpainting process,
regardless of the complexity of the image [5]. Some generalizations of the BEGCH
model for grey-values or color images, keeping the simplicity and computational cost
of the original one, can be found in [7,12,17]. A further generalization of the classical
Cahn—Hilliard equation with dynamic boundary conditions has been proposed in [40],
which could be useful for restoration of motion pictures. In [12] Burger et al. derived
their TV-H~! inpainting equation model by considering a total variation functional
with finite values when applied to functions |u| < 1 (observe that the energy functional
associated to the Cahn-Hilliard equation I'-converges, in L' topology as ¢ — 0, to
a total variation functional with finite values limited to indicator functions u = 0 or 1
[41,42]). A different approach was followed by Bosch and Stoll [7] for grey-values images
and, independently, by Cherfils et al. [17] for color images. They both considered
a vector-valued BEGCH equation, with each component describing the distribution
of a given grey-value intensity or color of the restored image. With respect to (2.5),
an interaction term among the vector components is added to avoid ambiguity in
assigning grey-values or colors to the image pixels.
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2.1. NUMERICAL IMPLEMENTATION OF SOME INPAINTING MODELS

In this paper we have applied the following second-, third- and forth-order PDEs based
inpainting techniques to the medical contexts described in Sections 3 and 4.

)

)

Harmonic Equation (HE) [50]:

(2.6)

Au—Ax(Q\D)(f —u) =0 inQ,
u=f on 0f).

This equation has been numerically solved by the gradient descent method. To
this end we applied the function heat_equation [49] in the MATLAB® software
package.

Free Noise Harmonic Equation (FHE):

{Au() in D, (2.7)

u=f inQ\D.

This equation has been numerically solved by using finite difference method for par-
tial derivatives and the resulting linear system is solved for the unknown elements.
To this end we applied the function inpaint_nans (with input parameter 0) [20]
in the MATLABY software package.

TV equation:

{v. (1) + 2@\ D) (f —w) =0 in (2.8)

u=f on 0N).

This equation admits at least a solution in the space of the BV functions in
Q when f is a BV function as well [15]. This equation has been numerically
solved by the gradient descent method. To this end we applied the function
bvl2_inpainting_convs [49] in the MATLAB® software package.

CDD equation:
V- (SEEDT) 4 2@\ D) (f - w) =0 inQ, 29)
u=f on 0§},
where k denote the curvature of u, while G is defined as follows
1 if Q\D
G(z,s) = ifzeQ\D, (2.10)
g(s) ifzeD.

The function g(s) denotes the intensity of the diffusion coefficient in (2.9) driven by
the curvature of u. Following Brito and Chen [10], we set g(s) = a+bs?, with model
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parameters a << b, such that a numerical solution of (2.9) can be determined by
a faster fixed point method with respect to the gradient descent method proposed
in [52].

Euler’s elastica equation (EE):
{V-VJr)\oX(Q\D)(f—u):O in Q, 2.11)
Vu-v=V(¢k)|Vul]) - v=0 on dQ
with Vu VTu
V= ¢>(k)W - WV (¢' (k)| Vul) - v,

and ¢(k) = a + bkP. A numerical solution of (2.11) can be determined by the
algorithm proposed by Tai et al. [54], a faster and efficient method based on a con-
strained minimization problem related to an augmented Lagrangian functional.
Other algorithms to efficiently solve (2.11) can be found in [9,11].

TV — H™! equation:
Ap + Xox(Q\ D) (f —u) =0, p € 0TV (u), (2.12)
where
T LR
Elements p € 0TV (u) are given by [12, Theorem 1.5],[57, Proposition 4.1]:
-v- (%) ace. on {|u| < 1},
p=<{—-V- (%) +p, p<0 ae. on{u=-1}, (2.14)

-V (%) +p, >0 ae on{u=+1},

provided that Vu/|Vu| - v = 0 on 992 plus some other conditions on the Cantor
part of the distributional derivative Du of u. Here the convention Vu/|Vu| =0
if Vu = 0 is used. Further, p € 9x1(u) with

() 1 if |ul <1la.e. in Q,
u) =
X1 +o0o otherwise.

With a suitable choice of p in (2.14), TV-H! equation (2.12) now reads

{A [V- (Igizl)} —AxX(Q\ D) (f —u)=0 inQ, (2.15)
Vu ., on ON. .

It is worth noting that the first term of (2.12), or (2.15), can be seen as the gradient
flow for the functional TV in (2.13) with respect to the H~' norm. That justifies
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the name to equation (2.12) given by Burger et al. [12]. Furthermore, equation
(2.15) differs from the above mentioned TV inpainting model [53] by the Laplacian
operator behind the first term on the right-hand side of (2.8).

The existence of a solution u to the equation (2.12) in the space of BV functions on
Q) is proved in [12, Theorem 1.4], provided f € L?(Q). Equation (2.15) has been
numerically solved by the gradient descent method. To this end we applied the
function bvnegh_inpainting_convs [49] in the MATLAB® software package.

g) Free Noise biharmonic equation (FBHE):
A(Au)=0 inD
(Au) =0 in D, (2.16)
u=f in Q\ D.

This equation has been numerically solved by using finite difference method for
partial derivatives and the resulting linear system is solved for the unknown elements.
It is implemented in the function inpaint_nans (with input parameter 3) [20] in
the MATLAB® software package.

About the TV, CDD and TV-H~! models, we considered a regularized version — as
done in [12,52, 53] respectively — by replacing |Vu| in (2.8), (2.9) and (2.15) with
v/ (Vu)? + 62, being ¢ a small number known as regularity parameter. To numerically
solve the TV (2.8) and TV-H™! (2.15) PDEs, a semi-implicit convexity splitting
method (see [5] and references therein) has provided an unconditionally gradient stable
time-discretization scheme [51], allowing larger time steps for the related gradient flow
equations compared to the HE (2.6) (see Table 1).

Finally, we observe that inpainting PDEs don’t always admit a unique solution, as
pointed out by Chan et al. [15] for the TV and EE equations. The numerical solutions
obtained by the iterative methods mentioned above may actually depend on the initial
guess function wug. In our tests we have set ug = 0 and ug = f respectively inside and
outside the inpainting domain D.

3. MAGNETIC PARTICLE IMAGING

MPI assumes superparamagnetic nanoparticles as the tracer material. The spatial
distribution ¢(x) of a tracer material injected inside the volume under investigation is
computed applying external magnetic fields to the field of view, and then numerically
processing and analyzing the signal s(¢) induced by the material. The reaction of the
magnetic nanoparticles to the external excitation fields can be modeled by a non-linear
response, which is filtered, analysed and used for reconstructing the final image.
A combination of a static selection field and a time changing magnetic field (drive
field) is applied to the tracer material; their superposition saturates all the particles
inside the volume except those in a small area, called field free point (FFP), which
rapidly moves around the scanned region along paths as the Cartesian trajectories
of Figure 1.
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Fig. 1. An example of FFP Cartesian trajectories, along the z-(left) and y-(right) direction

The induced signal s(t), usually measured by means of some receive coils, just
depends on the tracer concentration ¢ around the FFP instantaneous position zppp.
Consequently, the MPI reconstruction problem consists in deriving the nanoparticles
concentration ¢ from the induced signal s.

Basically, there exist two main lines of research in the literature for solving the MPI
reconstruction problem, as described in [27]: the measurement based (MB) approach
[24, 34], and the model based approach including z-space (XS) [25,26]. The MB
approach is based on the inverse problem expressing the non-linear relation between
the concentration ¢ and the frequency response of the signal. The Fourier transform
of the induced signal, sy, is linearly related to c by the following linear system

sp=Sc. (3.1)

Here S is a matrix called system function; it depends on the physical configuration
of the apparatus and on the nanoparticles properties. By measuring sy, and inverting
the system (3.1), the concentration ¢ can be recovered by computing the solution
in the least squares sense or with the help of regularization techniques, such as the
singular value decomposition (SVD), the Tikhonov’s method or more advantageous
iterative methods as the Kaczmarz method, the CGLS and LSQR approach [32,36].

The XS approach, proposed by Goodwill et al. in [25,26], differs from MB because
the reconstruction problem is not formulated as an inverse problem. It is based instead
on the assumption that the nanoparticles distribution ¢ — once convolved with an
opportune point spread function — is proportional to the induced signal s generated
on a receive coil over the rate of change of the nanoparticles saturation. Set @ the axis
of the receive coil, it results [26]

s(t)

e & (cx[a- Hoppp(t)]) (xrrp(t)) - (3.2)
VFFP

Here vppp = |vppp| 0ppp is the FFP velocity vector and H is a space variable function
with values in R x R%. H indicates the area where the paramagnetic nanoparticles
are not yet saturated. It is usually modeled by the derivative of the Langevin function
(see, for instance, [26,32]).
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From (3.2) one deduces that the point spread function — the term between the
square brackets — actually depends on 9ppp(t), which varies with time. However, by
adopting Cartesian trajectories for the FFP ([32]), oppp(t) is mainly directed along
a fixed direction. Thus one can assume ¥ pp constant, so simplifying the deconvolution
process. Observe also that the inversion points on the Cartesian trajectories are usually
neglected, as they can generate ambiguity in (3.2) being both s and vpprp close to
zZero.

On the one hand, XS is a simpler approach than those methods based on the
inversion of the system function. On the other hand, XS works only for uniformly
spatial drive fields. In recent years, a different Hybrid XS (HXS) approach, combining
both the MB and XS, was also proposed in [55,56]. An interesting overview of all
methods techniques adopted in MPI, together with their preclinical investigations, can
be found in [33].

3.1. APPLICATION OF PDES INPAINTING TO MPI

In this section inpainting based on PDEs is showed to be a useful technique to solve
in a novel way the MPI reconstruction problem by the application of the XS approach.
Formula (3.2), describing the nanoparticles distribution, applies only to those points
belonging to the FFP trajectory. Concentrations in the remaining image points have to
be determined by some interpolation or approximation algorithms. Then the inpainting
approach can be used as an approximant to reconstruct final MPI images by the XS
method. In this preliminary study we test the PDEs inpainting techniques mentioned
in Section 2.1 on standard “phantom” objects presenting different geometric features,
which are typically used for testing MPI devices in preclinical investigations (see for
example [24,32]).

We consider two phantom objects, a “bar” and the letter “P”, whose binary images
are shown in Figure 2. Both these images are of the same size, say 8 x 8 mm?, and
are sampled at 100 x 100 pixels. The phantom “bar” is of about 6 mm length and
0.7 mm thick, while the object “P” is composed by seven distinct spheres of 0.8 mm
length diameter. The distance between two spheres is equal to 1.2 mm, thus close to
the theoretical intrinsic resolution of the simulated apparatus as described hereafter.

Fig. 2. Images used for the simulation study. Left: Phantom “P”, Right: Phantom “Bar”.
Size: 8 x 8 mm?, resolution: 100 x 100 pixels

To carry out MPI simulations, we considered iron-oxide nanoparticles (Resovist®)
with core diameter D = 30nm, and a gradient for the selection field equal to 5T /m,
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in order to achieve a theoretical resolution of ~ 0.5mm at a temperature T =
310K [25]. Drive fields along z- and y- directions oscillated at 25 kHz and 25/24 kHz
to implement Cartesian trajectories for the FFP (Figure 1). The frequency sampling
was set to 2.5 MHz. For the sake of simplicity nanoparticles was assumed to have a
pure Langevin-type behaviour [32].

To avoid anisotropy in the resolution of 2D reconstructed images by XS (see [26]),
the simulated scanning process for each phantom object was performed in both z- and
y-directions of the Cartesian trajectories (Step 1). The obtained partially filled images
have now to be approximated. In the present paper we performed this approximation
by processing the images with the following six different PDEs inpainting procedures:
the second-order HE (2.6), FHE (2.7) and TV (2.8) equations, the third-order CDD
(2.9), and the forth-order EE (2.11) and TV-H™! (2.12) equations. The parameter
values used in the corresponding numerical algorithms are listed in Table 1 (Step 2).

Table 1. Parameter values used in the inpainting PDEs algorithms. For a full description
about the meaning of the parameters we refer to [5,10,12,15,50-53]

Time | Mesh Fidelity | Regularity | Convexity splitting Model

step size parameter | parameter coefficients parameters

T hL hy )\0 (5 01 Cz a b P
HE 0.01 1 1 100 — — — - - | =
FHE — 1 1 — — — — — - | =
TV 100 1 1 100 0.01 100 100 - - | =
CDD — 1 1 100 0.01 — - 001|112
EE — 1 1 100 — — — 1 112
TV-H '] 100 [1]1 100 0.01 100 100 - | -1-

The resulting images u, and u, was firstly processed by a Wiener’s deconvolution
(Step 3) and successively merged pixel by pixel into the final image u by a geometrical
mean, that is u(i,j) = \/ug(4,7)uy(t,j), as done in [56] (Step 4). At this last step
a further processing by a high-pass filter was performed. Figure 3 illustrates these
steps as regard to the HE inpainting method applied to the phantom object “P”.
Observe that in our simulation study the XS approach was applied by neglecting any
problem related to the “fundamental frequency” loss (the reader can refer to [45] and
references therein for a discussion about this issue). Moreover, sources of “noise” were
not considered in this first set of simulations.

In Figure 4 the performances of the six PDEs inpainting methods mentioned above
are compared to two numerical techniques available in the literature: 1) the automated
smoothing procedure, based on a penalized least squares method, implemented in the
function inpaintn [23] created by Garcia [22]; 2) the spline interpolation algorithm
specified in the MATLAB® griddata function (with the v4 option).
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Fig. 3. HE inpainting procedure applied to the phantom “P” object. Top row: scanned

XS images by the Cartesian trajectories, in false colour; the inpainting masks are given

by the black points (Step 1). Second row: corresponding inpainting recovering (Step 2).

Third row: Wiener deconvolution (Step 3). Bottom row: True phantom object (left) and
final merged image u (right), further processed by a high-pass filter (Step 4)
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r=0.850 r=0.869 r=0.790 r=0.838
PSNR=18.39 PSNR=18.80 PSNR=17.34 PSNR=18.24
SSIM=0.572 SSIM=0.597 SSIM=0.492 SSIM=0.518
CPU=2.101 CPU=0.081 CPU=10.33 CPU=0.316

EE TV-H" inpaintn griddata (v4)

r=0.848 r=0.854 r=0.871 r=0.877
PSNR=18.60 PSNR=18.75 PSNR=18.83 PSNR=19.08
SSIM=0.561 SSIM=0.576 SSIM=0.597 SSIM=0.597
CPU=77.10 CPU=2.398 CPU=2.952 CPU=3.673

Fig. 4. Comparison among the true phantom objects and the final reconstructed images
by eight different inpainting methods. For each image the correlation coefficient r, the peak
signal-to-noise ratio PSN R, the structural similarity SSIM and the C PU are reported
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By analogy with the analysis performed in [7], for each method we computed three
parameters measuring the quality of the reconstruction with respect to the original
image: the correlation coefficient r, the peak signal-to-noise ratio PSNR (the higher
the better, see for example [7]), the mean structural similarity SSIM introduced by
Wang et al. [58] (values are between —1 and 1, those closer to 1 indicate a better
quality of the reconstructed image). The computational time CPU in seconds was also
calculated. All these parameters are reported in Figure 4 for each reconstructed image.
Note that in order to evaluate the CPU parameter, the following stopping criterion
was applied to the six PDEs iterative methods:

[|un — Un—1||1

<, (3.3)
[tn—1l4

where |-||, denotes the L' norm and u,, the n-th iterative solution. The threshold
value 1 was set equal to 0.5-107°. Note that the criterion (3.3) could not be applied to
inpaintn, because this threshold value was never reached in our tests. Thus we stop
the iterative procedure after 1000 iterations. All computations have been executed in
MATLAB® R2010a on a 64-bit computer with a single CPU type Intel® Core™
i3-4005U at 1.70 GHz, dual core, and with 12 GB main memory available.

Figure 4 shows that the FHE, the inpaintn and the griddata methods provide the
best recovered MPI images for each phantom, even if with a faster computational time
for FHE. The high computational time for EE is essentially due to the complexity of
the model, if compared to the unconditionally stable TV-H™!. Further tests involving
the AMLE model, the original transport equation (2.1), the vector-valued BEGCH,
and its modification by using a logarithmic term as a double well potential, did not
improve the results showed in Figure 4.

Finally, we wish to point out some issues relating the different results obtained
by the second-order HE, the third-order CDD and the forth-order TV-H~! method.
Consider the recovered MPI image u, for the object “ P”. The image u,, reconstructed by
HE, compared with the corresponding ones obtained by CDD and TV-H™!, highlights
a (more evident) trace of the FFP trajectories (see Figure 5).

TV-H' THEOR.

Sy

Fig. 5. Phantom object “P”: a zoomed section of the recovered MPI image u, inpainted
by the HE, CDD and TV-H~! procedures, compared with the theoretical image obtained
by eq. (3.2)
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FHE TV CDD

r=0.801 r=0.780 r=0.766 r=0.753
PSNR=16.15 PSNR=15.86 PSNR=15.29 PSNR=15.43
SSIM=0.385 SSIM=0.371 SSIM=0.389 SSIM=0.358
CPU=2.645 CPU=0.261 CPU=15.89 CPU=2.326

TV-H" inpaintn griddata (v4)

r=0.801 r=0.801 r=0.778 r=0.764
PSNR=16.10 PSNR=16.06 PSNR=15.80 PSNR=15.63
SSIM=0.378 SSIM=0.383 SSIM=0.364 SSIM=0.358
CPU=81.30 CPU=6.856 CPU=3.013 CPU=3.579
HE FHE TV CDD

r=0.797 r=0.754 r=0.725 r=0.760
PSNR=17.48 PSNR=16.82 PSNR=16.44 PSNR=16.72
SSIM=0.421 SSIM=0.413 SSIM=0.413 SSIM=0.380
CPU=2.585 CPU=0.085 CPU=6.202 CPU=1.657

EE TV-H" inpaintn griddata (v4)

r=0.816 r=0.820 r=0.781 r=0.784
PSNR=17.80 PSNR=17.97 PSNR=17.20 PSNR=17.26
SSIM=0.465 SSIM=0.470 SSIM=0.398 SSIM=0.357
CPU=79.45 CPU=7.471 CPU=3.042 CPU=3.606

Fig. 6. Comparison among the final reconstructed images by eight different inpainting
methods for the second set of simulations. For each image the correlation coefficient r, the
peak signal-to-noise ratio PSN R, the structural similarity SSIM and the CPU are reported
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On the one hand, this indicates that the second-order method is less powerful
in connecting distant points of the image. On the other hand, a similar or better
performance of the HE method with respect to CDD and TV-H~! can be observed
in terms of the final image quality. Indeed, a further comparison with the theoretical
image obtained by (3.2) shows that CDD performs an inhomogeneous completion,
while disconnected areas of the original image are “excessively glued” together when
the TV-H~! method is applied.

In a second set of simulations (Fig. 6) we considered a more realistic situation by
assuming that:

a) superparamagnetic nanoparticles have lognormal size distribution with diameter
d =30+ 3.2nm;

b) receive coils signals are corrupted by a source of white noise with signal-to-noise
ratio (SNR) equal to 20 (in line with what reported in [24], Figure 4);

c¢) superparamagnetic nanoparticles are subjected to Brownian relazation ([32,59] and
references therein), with relaxation time equal to 5 - 10~7s. Relaxation introduces
a delay on scans as well as a significant asymmetric blurring of the image in the
scanning direction ([18]). Besides it further reduces the SNR.

In contrast to the results reported in Figure 4, Figure 6 shows that TV-H~! and HE
methods provide the best recovered MPI images for each phantom object. Also in this
case the higher computational time of the EE method penalizes its good performance.
This result is expected because, contrary to FHE, inpaintn and griddata, these
inpainting methods work also on the original data to denoise the image.

4. APPLICATION OF PDES INPAINTING IN CORNEAL TOPOGRAPHY

In this Section we present the use of PDEs inpainting in the reconstructed elevation
map of the cornea anterior surface. We do not consider the problem of data acquisition,
but we use an approximation of real data of the anterior surface of the cornea. This
approximated data are generated on a grid with 360 x 101 uniform points in polar
coordinates, namely (6, p) € [—m, ] x [0, 5], which corresponds to the reconstructed
elevation map of the cornea anterior surface from data given in output by the corneal
topographer PrecisioHD™ of the iVis Technologies [29,30].

The measuring scale of a corneal topographer is about the order of millimeters.
Hence, the efficiency of an approximating algorithm applied to scanned data is measured
by a reconstruction error within the order of 1 ym. It is also important to reconstruct
the radial derivatives and the radial curvature of the original surface with enough
precision, since the curvature of a cornea is responsible of aberrations that can impact
the imaging performance of the eye. Specifically, about the 80% of the dioptric power
resides in the cornea, a region of the human eye in hemispherical shape of maximum
diameter 11-12 mm.

Sometimes it occurs that some areas of the detected domain are missed. Usually,
these areas occur near the boundary of the scanned region, as shown in Figure 7,
which plots the elevation map of a real human eye. That can be caused by some
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acquisition problems due to the laser technology, or by random measuring errors when,
for instance, the patient closes his eyes or moves his pupils. It is worth noting that,
even if the surface seems to be regular, its radial curvature does not present the same
regularity, as shown in Figure 8.
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Fig. 7. Real Eye Elevation Map with Missing Data Left: Contour plot. Right: 3D plot

Curvature

slevation
™ ®

Fig. 8. Real Eye Radial Curvature Map with Missing Data. Left: Contour plot.
Right: 3D plot

The main goal is then to reconstruct the original anterior surface of the cornea
by recovering the elevation and the radial curvature with an accuracy up to 1 um
and 10 pm, respectively. What mentioned above motivates our idea proposed in this
work of applying inpainting techniques based on PDEs for recovering missed data
and filling the empty areas of the scanned domain. To this end, we first considered
the elevation maps of cornea anterior surfaces, acquired by a corneal topographer, as
images to be inpainted. As in the classical inpainting setting, areas with missing data
are called inpainting region. From now on, we call this approach “elevation inpainting”,
because the elevation maps of the corneal anterior surface are considered as grey-values
of the image to be inpainted. Since the quality of the reconstructed surface by the
elevation inpainting was not satisfactory, we implemented a new procedure, which we
call “radialinpainting”. The procedure consists first in applying the PDEs inpainting
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techniques to the radial curvature image and then in properly recovering the image of
the anterior corneal surfaces. This approach considerably reduces the approximation
error.

We applied the following PDEs inpainting techniques, described in Section 2.1,
for both the elevation and radial inpainting procedures: the second-order HE
(2.6), FHE (2.7), TV (2.8) methods; the third-order CDD (2.9) method; the
forth-order TV-H™! (2.12) and FBHE (2.16) methods. Further, these inpainting
techniques have been compared with the automated smoothing procedure implemented
in the function inpaintn [22,23]. The corresponding parameter values are listed in
Table 1.

4.1. ELEVATION INPAINTING

We started by considering the elevation maps in polar coordinates, (6, p) € [—7, 71| X
x [0, 5]. We applied digital inpainting techniques to these images in order to reconstruct
the empty areas with missing data. Observe that the initial value of the angle 6 is set
equal to the first value, say 6y > —m, corresponding to a complete information in the
image.

To evaluate the performance of the inpainting method we computed the radial
curvature values of the inpainted surface. As a first numerical test, we considered
a real human eye surface without missing data, and we applied an inpainting mask
to the original surface to artificially remove some data points. Thus we were able to
compute the approximation error with respect to the original surface.

Figure 9 compares the original surface and the corresponding surface with
missing data regions to be inpainted, with the surfaces reconstructed by some
of the inpainting algorithms mentioned above. The picture highlights the failure
of the elevation inpainting when the HE is applied. A similar failure results
from the application of the other inpainting methods not included in the
picture (TV,TV-H™!, inpaintn).

Better performances are given by the FBE and FBHE algorithms, even if the
absolute curvature error is high (see Figure 10). This result has a theoretically expla-
nation: the missing data regions are placed on the border of the surface, but all the
applied inpainting methods are suitable for internal inpainting regions, because they
need boundary conditions. Only the FHE, FBHE allow incomplete information on the
border, so justifying a better behaviour.

Figure 10 reports, for all the compared algorithms, the maximum absolute error of
the radial curvature and elevation, computed in the region (6, p) € [—m, 7] x [0, p.] for
different values of p,, pg < p. <5, where pg denotes the higher radius with complete
information. This is important in order to recover a region larger than the original one
with missing data, but without considering the border where the error is higher. The
maximum absolute errors in the radial curvature are very high for all the algorithms,
higher than 10 pm when the radius p. > py. The test results lead us to conclude that
this inpainting approach is unable to reconstruct elevations and radial curvatures with
the desired precision.
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original elevation original plot elevation with missing regions HE

FHE FBHE CcbD

=g
——

Fig. 9. Example 1. Comparison among the true eye and the final elevation map images

reconstructed by the four best performing inpainting methods. Top line (from left to right):

original elevation, original elevation with missing data, HE method. Bottom line (from left
to right): FHE, FBHE, CDD methods

Max Absolute Error in the radial curvature on know data, p, = 4.45
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Fig. 10. Example 1. Maximum Absolute error (in mm) in the curvature (top line) and in
the elevation (bottom line) between the real known area of the eye and the reconstructed
area stretching to different radius ps < p. <5, with ps = 4.45
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4.2. RADIAL CURVATURE INPAINTING

As we pointed out in Section 4, the main goal of a corneal reconstruction problem
consists in a final approximation with maximum absolute error not larger than 1 pum.
At the same time, the radial curvature of the approximating surface should not differ
too much from that of the original surface. Unfortunately, as shown in the previous
section, the inpainting techniques applied to the elevation data do not give satisfactory
results as expected, especially for the radial curvature approximation. Thus we propose
a radial curvature based approach improving the results on the reconstruction of
the surface as well as of the curvature.

Our idea consists in applying digital inpainting techniques to the radial curvature
values instead of to the elevation data of the corneal surface.

Given a continuous function f(6, p) approximating the elevation data, the radial
curvature can be computed, for each angle 6, using the following formula

/"0, p)
(1+f(0,p)%)?

c(0,p) = , 0<p<ps, (4.1)

where pg < 5 denotes the higher radius with complete information corresponding to
the fixed 0 value.

Since we know only the elevation data in the grid mesh points, we need to find
a tool to approximate the first and second derivatives in (4.1). To this end, we use the
object oriented c++ library QIBSH++ that implements Hermite Quasi Interpolant
for 1D and 2D functions based on B-spline [4, 8,28, 38].

Applying inpainting techniques to the curvature allows to overcome the main issue,
explained in Section 4.1, when we deal directly with the surface. Indeed, the gradient
of the curvature on the boundary is usually very small (for the sphere it is exactly
zero) and so the boundary conditions imposed by the applied inpainting algorithms
are good approximations of the unknown ones.

The procedure here proposed consists in three steps. As a first step, the available
elevation data of the surface are used to compute the curvature, along each radial
direction. After approximating the partial derivatives of the surface by a general-
ized backward difference formula (GBDF), as described in [8,35,39], we compute
a quasi-interpolant Hermite spline and the related curvature. We choose a GBDF
approximation of order 4 and a spline quasi-interpolants of degree 3. In a second step,
the radial curvature, ¢(6, p), is recovered using inpainting techniques. Then, the final
recovered surface is achieved by radially solving a second-order Ordinary Differential
Equation (ODE) to compute the elevation of the real eye starting from the inpainted
curvature values. The function f to be recovered is solution of the following differential
equation:

f1(0,p) = (0, )/ (1 + f'(0,p)?)?

with fixed initial radius 0 < pg < pg, and initial values f(0, po), f'(8, po). The second
order ODE is solved using the MATLAB® function 0DE45.
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The last step of the algorithm relies in a final regularization computed by a tensor
product Hermite Quasi Interpolant based on B-spline, available in the QIBSH++
library. The quasi-interpolation method, as described in [8, 38], requires function
and first derivative values for computing the approximation. Moreover, the choice
of a quasi-interpolant is convenient for two main reasons. Firstly, as often it occurs
in real applications, interpolating data are affected by errors; hence, to relax the
interpolation conditions, smoothing or quasi-interpolation are commonly preferred to
interpolation, which may be too stringent. Secondly, the use of a quasi-interpolant has
a computational cost less than a global interpolant, this allowing to reduce time and
computational effort.

The above described numerical approach was applied to the same eye surface de-
scribed in Section 4.1. As shown in Figure 11, the empty areas have been reconstructed
by the curvature inpainting, no oscillation appears in the final inpainted surface.
Moreover, by comparing the error results in Figure 13 and in Figure 10, it is evident
the better performance of the radial curvature based approach. The original surface
and curvature are recovered in the inpainting domains with a maximum absolute error
of about 1073 mm and 10~2 mm, respectively. The best recovered radial curvature in
Figure 12 is obtained by the application of FHE and FBHE algorithms.

Other real corneal surfaces with different shapes and irregularities, showing larger
inpainting domains were also tested. We show the maximum absolute errors in the
reconstruction of two additional real eyes illustrated in Figures 14, 16.

original elevation original elevation with missing regions HE FHE

FBHE TVH1 cbD Inpaintn

Fig. 11. Example 1. Radial Curvature Inpainting. Comparison among the true eye and the

final elevation map images reconstructed by six different methods. Top line (from left to

right): original elevation, original elevation with missing data, HE, FHE methods. Bottom
line (from left to right): FBHE, TV-H™!, CDD, inpaintn methods
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original curvature original curvature with missing regions HE FHE

FBHE TVH1 cbD inpaintn

5 5 . 5
-~ -~ >
5 5 5
o // o /‘/ \D\ //
: 0 : - o \5/ - 0

Fig. 12. Example 1. Radial Curvature Inpainting. Comparison among the curvature of the

true eye and the curvature of the final elevation map images reconstructed by six different

methods. Top line (from left to right): original curvature, original curvature with missing

data, HE, FHE methods. Bottom line (from left to right): FBHE, TV-H™*, CDD, inpaintn
methods

Max Absolute Error in the radial curvature on know data, p, = 4.45
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Fig. 13. Example 1. Radial Curvature Inpainting. Maximum Absolute error (in mm) in the

curvature (top line) and in the elevation (bottom line) between the real known area of
the eye and the reconstructed area stretching to different radius pg < p. < 5, with ps = 4.45
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Fig. 14. Example 2. Top Left: Real Eye Elevation Contour Plot. Top Right: Real Eye
Elevation Map with Missing Data. Bottom Left: Real Eye Radial Curvature Contour Plot.
Bottom Right: Real Eye Radial Curvature Map with Missing Data
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Fig. 15. Example 2. Radial Curvature Inpainting. Maximum Absolute error (in mm) in the
curvature (top line) and in the elevation (bottom line) between the real known area of
the eye and the reconstructed area stretching to different radius ps < p. < 5, with pg = 2.25
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Fig. 16. Example 3. Top Left: Real Eye Elevation Contour‘p‘lot. Top Right: Real Eye
Elevation Map with Missing Data. Bottom Left: Real Eye Radial Curvature Contour plot.
Bottom Right: Real Eye Radial Curvature Map with Missing Data
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Fig. 17. Example 3. Radial Curvature Inpainting. Maximum Absolute error (in mm) in the
curvature (top line) and in the elevation (bottom line) between the real known area of
the eye and the reconstructed area stretching to different radius pg < p« < 5, with pg = 2.6
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In both cases illustrated in Figures 14 and 16 we used an inpainting region larger then
the original one, so that to have some information about the elevation data inside the
inpainting domain. Thus we computed the elevation and radial curvature errors in
this region. The results listed in Figures 15 and 17, highlight, once again, the good
performance of the curvature based approach, which, in this case, is able to recover
the eye surface with a maximal error no larger than 0.1 pm.

5. CONCLUSION

In this work we proposed a novel application of inpainting techniques based on PDEs
to two different medical contexts: the first one concerning visual reconstruction of
superparamagnetic nanoparticles distributions in MPT clinical images; the second one
is related to recovering data of corneal elevation maps in ophthalmology. The analysis
carried out by two set of simulations in the MPI framework, with and without adding
a source of noise, has shown that the inpainted images preserve the main properties
of the original ones. Further, the achieved results are of comparable accuracy with
those derived by standard and well tested numerical techniques usually applied in
medical field, even better in the presence of noise and when Brownian relaxation
is considered. As for the ophthalmological framework, we have implemented a new
procedure consisting in applying first the PDEs inpainting techniques to the radial
curvature image. Then, the images of the anterior corneal surfaces are properly
recovered to improve their quality by reducing the approximation error to the order of
precision required.

However, we believe that this work is a first attempt to apply PDEs inpainting
techniques to the medical contexts described above and that there is still much to
improve. Indeed, further developments of this study will investigate on searching
the best inpainting model to improve the overall quality of both the intrinsic MPI
images and the corneal surface reconstruction, e.g. with a lower gridding definition. In
particular, for MPI a lower frequency sampling to minimize the storage data could
be used, while for corneal reconstruction the application of PDEs inpainting from
scattered volumetric data given in output by the corneal topographer could be also
carried out.
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