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Abstract  
 

In this chapter the author presents a comprehensive model of a multi-component technical system 
aimed at simulating and optimizing its operation process. Among other things, the model postulates 
load-related dependencies between the system’s components and delayed repairs or replacements 
scheduled according to the components’ priorities, where delays result from limited maintenance per-
sonnel. During the last several decades researchers in the field of reliability theory constructed vari-
ous maintenance models, more or less applicable to real systems. Many authors follow purely analyti-
cal approach which, due to restrictive assumptions adopted for the purpose of analytical tractability, 
results in limited applicability of the considered models. These assumptions include: mutually inde-
pendent components, exponentially distributed time-to-failure and time-to-repair, repairs started im-
mediately after failures or carried out in negligible time, etc. The model proposed here does not im-
pose such limitations, because it is designed to use simulation rather than analytical methods for com-
puting purposes. The following assumptions bring the model closer to reality in comparison with its 
counterparts from the literature: 1) components are mutually dependent, i.e. a component’s failure 
rate can depend of the states of some other components 2) after a repair a component can be “as good 
as new”, “as good as used” or “as good as old” (perfect, imperfect, or minimal repair) 3) if mainte-
nance personnel is busy, newly failed components await repair in a priority queue, 4) the state of a 
component may be hidden and its failure can only be revealed by inspection. The chapter’s main result 
is a quite elaborate algorithm simulating the modeled system’s behavior over time. Examples are giv-
en how, based on the proposed model and the adopted maintenance policy, selected reliability-related 
parameters can be optimized by repeated simulation. Although computationally intensive, the simula-
tion approach allows to find performance and reliability characteristics for systems whose complexity 
or way of functioning rule out the application of analytical methods. 
 
1. Introduction  
 

During the past decades many reliability re-
searchers designed and analyzed various mainte-
nance models with the aim of finding optimal 
values of the maintenance parameters. The sur-
veys of earlier and recent publications on 
maintenance modeling and optimization can be 
found in (Alabdulkarim et al., 2013; Chouhan et 

al., 2013; Nakagawa, 2008; Nakamura et al., 
2017; Riane et al., 2009; Sarkar et al., 2011; 
Wang, 2002). Many works in this area endeav-
ored to obtain exact analytical solutions, but the 
requirement of analytical tractability made it 
necessary to impose quite restrictive assumptions 
on the adopted models (components’ independ-
ence, exponentially distributed time-to-failure 
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and time-to-repair, repairs started immediately 
after failures). The maintenance model proposed 
in this chapter is free from the above constraints, 
because it is mainly designed for the purpose of 
simulating the system’s operating process rather 
than deriving analytical formulas allowing to 
compute and optimize its reliability parameters. 
Admittedly, there exists a considerable number 
of publications regarding simulation of operation 
and maintenance processes, but they are mostly 
branch of industry-specific (Dietrich et al., 2017; 
Lyubchenko et al., 2020; Münsterberg, 2017; 
Panteleev et al., 2014; Soltanali et al., 2019; 
Vishnu & Regikumar, 2016), while there is ra-
ther a lack of literature on modelling and analys-
ing generic processes. Lu et al. (Lu et al., 2019) 
is one of a few papers filling this gap. The cur-
rent paper aims to build a possibly universal, 
widely applicable model allowing to detail the 
chronology of all events in the considered pro-
cess and perform its technical and cost analysis. 
Thus, it takes the discrete-event simulation ap-
proach to maintenance modelling.  
Let us begin with formulating the rules according 
to which the considered system operates. It is 
assumed that its components can be either fully 
operable or failed, and are interdependent in a 
certain sense. This means that the failure rate of a 
component can depend on the states of some 
other components, and a component’s failure can 
cause some other components’ failures. After a 
failure, a component is either replaced or re-
paired depending on its accumulated wear de-
fined as the integral of the component’s wear rate 
over time. More accurately, the integration inter-
val starts at the moment when the new compo-
nent is installed and ends at the moment when it 
fails. A component’s replacement also takes 
place when the component reaches its age or 
wear limit, even if still in operable state (preven-
tive replacement). Due to a limited number of 
maintenance personnel, a failed component can 
possibly wait in a queue for being serviced. The 
queue is organized on a priority basis which 
means that the higher priority components have 
precedence over the lower priority ones. Howev-
er, for the sake of computer implementation, it is 
more convenient to have several queues, each 
one being a FIFO sequence with components of 
equal priority. 
We will now outline the procedure simulating 
the behavior of a multi-component system oper-

ating in line with the above assumptions. The 
system starts working at time t0 = 0, with all the 
components being new and fully operable. The 
procedure generates a sequence of time points in 
which components change their states. Hence, if 
a certain component changes its state at tk, then 
tk+1 is the next instant at which the same or an-
other component changes its state, k ≥ 1. Alt-
hough we distinguish only two “functional” 
states of a component – working and failed, the 
model also defines a number of states for a failed 
component, as set out in Section 3. Thus, a state 
change of a component occurs when one of the 
following events takes place: 
• it fails, 
• its hidden failure is detected, 
• it reaches operating-age limit, 
• its repair or replacement is completed. 
We distinguish two types of failures – self-
revealing and hidden ones. A failure of the latter 
type can be detected only during an inspection or 
when the component is preventively replaced, 
and until then it remains unrevealed. The proba-
bility that a failure is of one or the other type is 
known for each component. If this probability is 
equal to one, the component is subject to failures 
of one type only. When a failure is revealed, the 
component undergoes a repair or replacement, 
provided that the maintenance personnel is avail-
able, otherwise it is scheduled for repair or re-
placement and awaits its turn in a maintenance 
queue, according to the rules given in Section 4. 
The presented maintenance model has several 
adjustable parameters. One of them is the age 
limit for a component’s repair; if a component is 
found to be failed before this limit is reached, it 
will be repaired, otherwise it will be replaced. 
The second key parameter is the age limit for a 
component’s operation; on reaching this limit the 
component will be preventively replaced, alt-
hough still operable. The limit for operation 
should exceed the limit for repair, because a 
component too old to be repaired if failed can be 
too new to be replaced if operable. Other tunable 
parameters include the number of maintenance 
personnel and the time between consecutive in-
spections necessary to reveal hidden failures.  
Each failure and maintenance action incurs a 
cost, and so does remaining of a component in a 
failed state. The system operator’s task is to min-
imize the total operating cost during a specific 
time period, or the long-run operating cost per 
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unit time. Either of the above costs is the objec-
tive function of the implicit optimization prob-
lem whose solution consists in finding the opti-
mal values of the adjustable parameters defined 
in the previous paragraph, which are the prob-
lem’s decision variables. According to the adopt-
ed notation (see Section 2) these are the parame-
ters RL[i], OL[i], MT and T. Clearly, there can be 
more decision variables if the present model is 
extended. However, due to the model’s complex-
ity, it is not possible to find the exact solution of 
the considered optimization problem by means of 
an analytical method. Instead, the sought values 
will be obtained numerically with the use of re-
peated simulation, hence they will be quasi-
optimal rather than optimal.  
The rest of the chapter is organized as follows. In 
Section 2 the used notation is presented. Section 
3 describes the life cycle of a single component 
from the start of operation to the completion of 
repair or replacement. Section 4 sets out the de-
tailed rules for the system’s operation. Based on 
these rules the algorithm simulating the system 
operation process is presented in Section 5. For 
illustration, the numerical results of its simplified 
version are discussed in Section 6, and the opti-
mal values of two decision parameters – OL[i] 
and T – are found. The chapter is finished with 
Section 7 containing several conclusions and 
prospects for future work. 
 
2. Notation and definitions  
 

CDF – cumulative distribution function, 
IFR – increasing failure rate, 
PDF – probability density function, 
TTF – time-to-failure, 
TTR – time-to-repair, 
n – number of components in the system, 
e1,…,en – the individual components, 
Q – number of different maintenance priority 
levels (maintenance queues), 
len[q] – the current length of the q-th mainte-
nance queue, q = 1,2,…,Q, 
mq[i] – the number of maintenance queue to 
which ei is assigned, 
ndx[q, r] – the index of the component waiting in 
place r in queue q, 
MT – the number of maintenance teams em-
ployed, 
av_mt – the number of currently available 
maintenance teams, 

Z[i] – set of components whose states can impact 
the wear rate of ei. It should be noted that i ∉Z[i], 
rev[i] – the binary variable determining whether 
failures of ei are self-revealing, if they are, then 
rev[i] = 1, else rev[i] = 0, 
T – the time between two consecutive inspec-
tions performed in order to reveal hidden failures 
of the components for which rev[i] = 0, 
Xi(t) – the functional state of ei at time t, Xi(t) = 1 
if ei is in operation, and Xi(t) = 0 if ei is failed or 
under maintenance, 
Yi(t) – the detailed state of ei at time t, Yi(t) = –1 
when ei is awaiting repair, Yi(t) = 0 when ei is 
being repaired or replaced, Yi(t) = 1 when ei is in 
operation, and Yi(t) = 2 when ei is in the state of 
undetected failure, 
Ai(t) – the actual age of ei at time t, given by  
t – s, where s is the moment when ei starts to 
operate as a new or replaced component, 
αi(t) – the aging rate of component ei at time t, 
αi(t) depends on Xi(t) and the functional states of 
the components in Z[i] at time t, thus αi(t) can 
vary over time. The aging rate of a component 
under repair is assumed to be zero, 
Ei(t) – the effective age of ei at time t, expressed 
by the integral ∫[s,t] αi(u) du, where s is the mo-
ment when ei starts to operate as a new or re-
placed component, 
RL[i] – age limit for the repair of ei: if a failure 
of ei is revealed at time t and Ai(t) ≥ RL[i] then ei 
is deemed too old to be repaired and must be 
replaced, 
OL[i] – age limit for the operation of ei: the still 
operable ei must be replaced at time t when Ai(t) 
reaches OL[i] (preventive replacement), as point-
ed out earlier, OL[i] > RL[i], 
L(i, E) – the function generating the remaining 
lifetime of the operable ei, provided that its effec-
tive age equals E and its aging rate is constant 
and equal to 1, L(i, E) returns a random value 
and is called when the new, repaired, or replaced 
ei starts operating. For example, if L(i, E) is to 
return a Weibull distributed random value, where 
σi is the shape parameter and the scale parameter 
expressing the aging rate of ei is equal to 1, then 
  ( , ) = [   − ln(1 −  )] /  −  , (1) 
 
U being the random value of the uniform distri-
bution. Equation (1) is obtained using the inverse 
CDF of the Weibull distribution, 
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R(i, E) – the function generating the time length 
of ei’s repair (A < RL[i]) or replacement 
(A ≥ RL[i]), where E is the effective age of ei, 
R(i, E) returns a random value and is called when 
a repair or replacement of ei begins, 
Si(t) – the time elapsing from t to the next state 
change of ei, provided that Yi(t) ≥ 0, the aging 
rate of ei remains unchanged after t if Yi(t) = 1, 
and no preventive replacements are carried out. 
Let us note that the actual time to the next state 
change of ei can differ from Si(t), because ei’s 
aging rate can vary due to possible state changes 
of the components in Z[i]. In view of the preced-
ing definitions we have: 
   ( ) =     ,  ( )   ( )⁄     |   (t) = 1   ,   ( )                  |   (t) = 0 (2) 

 
if ei enters state 1 or 0 at time t, and 
   ( ) = ⌈ / ⌉ ⋅  −   (3) 
 
if Yi(t) = 2, where ⋅ denotes the least integer 
upper bound. Si(t) has to be recalculated when ei 
is operable and a component in Z(i) changes its 
functional state (the details are given further in 
the chapter), 
Kfail[i], Krpr[i], Krplc[i] – the cost of ei’s failure, 
repair or replacement, 
k2[i] – the cost per unit time incurred due to re-
maining of ei in state 2 (unrevealed failure), 
k≤0[i] – the cost per unit time incurred due to 
remaining of ei in state ≤ 0 (awaiting or under 
service), 
kteam – labor cost of one team per unit time, 
K(t) – the total operating cost incurred up to  
time t, 
klong – the long run operating cost per unit time, 
defined as lim t→∞ K(t)/t. 
 
3. The life cycle of a single component 
 

The state changes of a single component occur 
according to a random process with the state-
space {−1, 0, 1, 2}, i.e. the state of ei at time t is 
expressed by the random variable Yi(t) defined as 
follows:  
Yi(t) = –1: ei is queued for service, 
Yi(t) = 0: ei is undergoing repair or replacement, 
Yi(t) = 1: ei is in operable condition, 
Yi(t) = 2: ei is in the state of unrevealed failure. 

If Yi(t) = –1, then ei is awaiting maintenance in 
the queue mq[i], and is moved forward as the 
components preceding ei are taken for repair or 
replacement. Let us note that if r is the place of ei 
in the queue mq[i], then ndx[mq[i], r] = i. This 
equality will be used in step 5 of the algorithm 
presented in Section 5. The inter-state transitions 
of a component are illustrated in Figure 1.  
 

 
Figure 1. Possible transitions between a component’s 
states. 
 
Direct transition from 1 to 0 or from 2 to 0 takes 
place if a maintenance team is available when a 
component’s failure is self-revealed or revealed 
by an inspection. For a component with no hid-
den failures the diagram in Figure 1 is simpler, 
because it does not contain the node representing 
state 2, as well as the arcs connected with it. 
The diagram in Figure 2 illustrates the behavior 
of a component in the maintenance queue, i.e. 
placing a component in the queue, moving it 
ahead, and taking it for repair or replacement.  
 

 
 
Figure 2. Dynamics of a maintenance queue. 
 
Places in the queue are indicated with negative 
numbers that must not be confused with a com-
ponent’s states (however, note that if a compo-
nent is in place –1, its state is also –1). The dia-
gram doesn’t illustrate situations when multiple 
components leave the queue at the same time 
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(such an event has probability 0 if components 
are serviced independently of each other). If 
simultaneous transitions to state 0 were taken 
into account, the diagram would have to include 
transitions from –k to min(–k + s, 0), where k ≥ 2 
and 2 ≤ s ≤ av_mt, which would increase its 
complexity. 
 
4. The rules for the system’s operation 
 

Since failures of some components are hidden 
(rev[i] = 0), it is necessary to perform regular 
inspections in order to reveal failed components 
and repair or replace them. Such inspections are 
performed every T time units, where T is one of 
the parameters that can be optimized. Let us as-
sume that t is the time point when a self-
revealing failure occurs or a hidden one is de-
tected. If a maintenance team is available at t, the 
failed component (say ei) is taken for repair  
(Ai(t) < RL[i]) or replacement (Ai(t) ≥ RL[i]). If 
all maintenance teams are busy, ei is placed in 
the respective maintenance queue, whose number 
is given by mq[i]. Besides, when a component’s 
actual age reaches OL[i], the component is taken 
or scheduled for replacement, even if still opera-
ble. Let us note that ei can be in the state of unde-
tected failure, and thus inoperable, when its actu-
al age reaches OL[i]. 
A component that cannot be serviced immediate-
ly when its failure occurs or is detected (due to 
temporal unavailability of maintenance person-
nel) is placed in one of Q maintenance queues, 
according to its maintenance priority. As men-
tioned earlier in this section, the maintenance 
priority of ei (its respective queue number) is 
given by mq[i] which belongs to the set 
{1,2,…,Q}. Each queue contains components 
with equal priorities and is managed on a first-in-
first-out basis. The components in queue no. q 
are serviced before those in queue no. q + 1, 
where 1 ≤ q ≤ Q – 1. The detailed state of a com-
ponent waiting in a maintenance queue is equal 
to –1, i.e. Yi(t) = –1 if ei is failed and waiting to 
be serviced. In turn, the index of the component 
waiting in place r in queue q is given by 
ndx[q, r], and len[q] denotes the length of queue 
q. The arrays mq[⋅], ndx[⋅] and len[⋅] are needed 
by the simulation algorithm. 
The components placed in maintenance queues 
wait until one of the maintenance teams becomes 
available, then the first to be serviced (say ei in 

queue mq[i]) is taken for repair or replacement, 
and those remaining in the queue are moved one 
place forward. If Ai(t) < RL[i], where t is the time 
when ei leaves the queue, then ei will be repaired, 
otherwise (Ai(t) ≥ RL[i]) it will be replaced. Let 
us note that the age of ei can be less than RL[i] 
when ei fails, but, due to waiting in the queue or 
remaining in state 2 (undetected failure), the age 
of ei can exceed RL[i] when ei is taken for servic-
ing. Thus, a component suitable for repair at fail-
ure can be no more suitable when its servicing 
starts. Also note that the actual age of ei has to be 
known in order to decide whether it should be 
either repaired or replaced, or to stop the opera-
tion of ei when its actual age reaches OL[i]. 
Therefore it is necessary for each component to 
record the time when it is first put in operation. 
 
5. The simulation algorithm 
 

According to the assumptions listed in the intro-
duction, an algorithm for simulation of the sys-
tem operation process has been constructed. Its 
main function is to generate the sequence of time 
points at which the system components change 
their detailed states, i.e. the sequence (tk, k ≥ 1), 
where tk is the k–th instant at which any such 
change occurs. The algorithm runs in a loop 
whose body is composed of the following steps. 
 
Step 1 
Assign initial values to all the variables quantify-
ing the system operation process. This is realized 
by the following pseudocode. 
 
k←0;  t0 ← 0;  av_mt ← MT; 
for q = 1,…,Q do { 
    len[q] ← 0; 
} 
for i = 1,…,n do { 
    Yi(t0) ← 1;  Ai(t0) ← 0;  Ei(t0) ← 0; K(t0) ← 0; 
    Si(t0) ← L(i,0)/αi(t0); 
}   
 
At t0 = 0 all components are operable (Yi(t) = 1 
for i = 1,2,…,n) and their effective age is equal 
to 0, therefore their anticipated sojourn times in 
the operable state are generated using L(i, 0).  
 
Step 2 
If k = k_max, stop. Otherwise add 1 to k. 
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Step 3 
Compute tk – tk–1 as the smaller of the following 
two values: 
 
min    (    ) |  :   (    ) ≥ 0   (4) 
 
and 
 
min    [ ] −   (    ) |  :   (    ) ≥ 1  . (5) 
 
The first minimum is computed over all i such 
that ei is in a non-negative state at tk–1, and the 
second – over all i such that ei is operable or its 
failure is unrevealed at tk–1. It is easy to check 
that tk is the first moment after tk–1 when  
any state change occurs. Note that the compo-
nents queued for maintenance are irrelevant to 
the value of tk. Further, if Yi(tk–1) = 1 and  
Si(tk–1) ≤ OL[i] – A(tk–1), put 
 
fail[i] ← 1, 
 
otherwise put 
 
fail[i] ← 0. 
 
The variable fail[i] determines whether ei fails at 
tk and is used in step 7 (cost calculation). Finally, 
for each i such that Yi(tk–1) ≠ 0, put 
 
Ai(tk) ← Ai(tk–1) + (tk – tk–1) 
 
and 
 
Ei(tk) ← Ei(tk–1) + αi(tk–1)⋅(tk – tk–1). 
 
If, in turn, Yi(tk–1) = 0 then put Ai(tk) ← Ai(tk–1) 
and Ei(tk) ← Ei(tk – 1), because neither actual nor 
effective age of a component increases when it is 
under maintenance.  
For clarity, the code realizing step 3 is presented 
below. 
 
tk ← tk–1 + min [(4), (5)]; 
for i = 1,…,n do { 
    if ( Yi(tk–1) = 1 and Si(tk–1) ≤ OL[i] – A(tk–1)) 
    then { 
        fail[i] ← 1; 
    } 
 
 

    else { 
        fail[i] ← 0; 
    } 
    if ( Yi(tk–1) ≠ 0 ) then { 
        Ai(tk) ← Ai(tk–1) + (tk – tk–1); 
        Ei(tk) ← Ei(tk–1) + αi(tk–1)⋅(tk – tk–1); 
    } 
    else { 
        Ai(tk) ← Ai(tk–1); 
        Ei(tk) ← Ei(tk – 1); 
    } 
} 
 
Step 4 
Assign Yi(tk–1) to Yi(tk) for each i∈{1,2,…,n}; 
this operation ensures that the components which 
do not change their states at tk will retain them in 
the interval [tk, tk+1).  
 
Step 5 
Compute Yi(tk) for each ei such that Yi(tk–1) ≥ 0 
and Yi(tk) ≠ Yi(tk–1), i.e. ei is not awaiting service 
in the interval [tk–1, tk) and its next state change 
(relative to tk–1) takes place at tk∗. Note that every 
such ei fulfills either of the following conditions: 
 
min( Si(tk–1), OL[i] – Ai(tk–1) ) = tk – tk–1 (6) 
 
for i such that Yi(tk–1) ≥ 1, or 
 
Si(tk–1) = tk – tk–1 (7) 
 
for i such that Yi(tk–1) = 0. If ei fulfills (6) or (7), 
its state at tk is determined as follows:  
a) if Yi(tk–1) = 2 then ei is placed in the mainte-

nance queue at tk, i.e. ei changes its state to –1 
at tk, 

b) if Yi(tk–1) = 1 then ei changes its state to 2 at tk, 
provided that rev[i] = 0 and an inspection or 
preventive replacement is not planned at tk, 
otherwise ei changes its state to –1 at tk, 

c) if Yi(tk–1) = 0 then ei’s repair or replacement is 
completed at tk, i.e. ei changes its state to 1  
at tk. 

                                                 
∗ If ei is awaiting service in interval [tk–1, tk), then it 

can change its state at tk only if servicing of at least 
one component is finished at tk. Thus, a change of 
ei’s state or place in the queue is secondary relative 
to state changes of components passing from state 0 
to state 1. For this reason, the states or places in the 
queues of the components awaiting service are up-
dated in the next (sixth) step. 
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In case (c) the variable av_mt is increased by the 
number of components changing their states to 1 
at tk. Moreover, if ei’s replacement rather than 
repair ends at tk, the actual and effective age of ei 
is set to 0. Let us note that ei’s replacement be-
gins at t < tk, thus Ai(t) ≥ RL[i] and, since Ai(t) 
does not change in [t, tk), it holds that 
Ai(tk) = Ai(t). The code implementing step 5 is 
given below. 
 
for i = 1,2,…,n do { 
    if ( Yi(tk–1) = 1 and (6) holds ) then { 
        if ( rev[i] = 0  and  tk < tk /T ⋅ T  and 
        Ai(tk) < OL[i] ) then { 
            Yi(tk) ← 2; 
        } 
        else { 
            q ← mq[i];  len[q] ← len[q] + 1; 
            ndx[q, len[q]] ← i; Yi(tk) ←  –1; 
        } 
    } 
    if ( Yi(tk–1) = 2  and  (6) holds ) then { 
        q ← mq[i];  len[q] ← len[q] + 1;  
        ndx[q, len[q]] ← i; Yi(tk) ← –1; 
    } 
    if ( Yi(tk–1) = 0  and  (7) holds ) then { 
        Yi(tk) ← 1; avl_r ← avl_r + 1; 
        if ( Ai(tk) ≥ RL[i] ) then { 
            Ai(tk) ← 0; Ei(tk) ← 0; 
        } 
    } 
} 
 
Step 6 
If av_mt > 0, the states of at most av_mt first-to-
be-serviced components are set to 0 at tk, then 
av_mt and the maintenance queue parameters are 
updated accordingly. This task is accomplished 
by the code below: 
 
if av_mt > 0 then { 
    for q = 1,2,…,Q do { 
        aux ← min( av_mt, len[q] ); 
        for r = 1,2,…,aux do { 
            Yndx[q, r] ← 0; 
            ndx[q, r] ← ndx[q, r + aux]; 
        } 
        len[q] ← len[q] – aux; 
        av_mt ← av_mt – aux; 
        if av_mt = 0 then break; 
    } 
} 

Step 7 
Compute K(tk) by adding the cost incurred during 
(tk–1, tk] to K(tk–1). This is realized as follows:  
 
K(tk) ← K(tk–1) + (tk – tk–1)⋅MT⋅kteam ; 
for i =1,2,…,n do { 
    if ( Yi(tk–1) ≤ 0 ) then { 
K(tk) ← K(tk) + (tk – tk–1)⋅k≤0[i]; 
    } 
    if ( Yi(tk–1) = 2 ) then { 
        K(tk) ← K(tk) + (tk – tk–1)⋅k2[i]; 
    } 
        if ( Yi(tk–1) ≠ 0 and Yi(tk) = 0 ) then { 
        if  ( Ai(tk) < RL[i] ) then {  
                K(tk) ← K(tk) + Krpr[i]; 
        } 
        else {  
                K(tk) ← K(tk) + Krplc[i]; 
        } 
    } 
    if ( Yi(tk–1) = 1  and  Yi(tk) ≠ 1  and 
    fail[i] = 1 ) then { 
        K(tk) ← K(tk–1) + Kf[i]; 
    } 
} 
 
Remark 1. The cost of repair or replacement is 
added when either of these actions starts at tk, 
because it is uncertain, prior to computing tk, 
whether the actual age of ei at tk has reached 
RL[i]. 
Remark 2. The last IF command adds Kf[i] to 
K(tk), provided that ei fails at tk. This is deter-
mined by the variable fail[i] whose value is as-
signed in step 3. 
 
Step 8 
Obtain Si(tk) if at tk the state of ei changes to non-
negative, or ei remains in state 1, but at least one 
ej in Z(i) changes its state. Otherwise put 
 
Si(tk) ← Si(tk–1) – (tk – tk–1). 
 
The following piece of code realizes step 8: 
 
for  i = 1,2,…,n do { 
    if ( Yi(tk) ≠ Yi(tk–1) ) then { 
        if ( Yi(tk) = 0 ) then { 
            Si(tk) ← R(i, Ei(tk)); 
        } 
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        if ( Yi(tk) = 1 ) then { 
            Si(tk) ← L(i, Ei(tk)) ⁄ αi(tk); 
        } 
        if ( Yi(tk) = 2 ) then { 
            Si(tk) ← tk /T ⋅ T – tk; 
        } 
   } 
 
   else if (Yi(tk) = Yi(tk–1) = 1 and Yj(tk) ≠ Yj(tk–1)  
   for at least one j ∈ Z[i]) then { 
        Si(tk) ← [ Si(tk–1) – (tk – tk–1) ]⋅αi(tk–1) ⁄αi(tk); 
    } 
 
    else { 
        Si(tk) ← Si(tk–1) – (tk – tk–1); 
    } 
} 
 
Remark 1. If ei changes its state to 2 at tk, then 
tk < tk /T⋅T and Ai(tk) < OL[i] in view of the rule 
(b) in step 5, thus Si(tk) > 0. 
Remark 2. If the state of ei remains unchanged at 
tk, but the state of at least one ej, j ∈ Z(i), changes 
at tk, then the aging rate of ei also changes and 
the difference Si(tk–1) – (tk – tk–1) lengthens or 
shortens depending on the ratio αi(tk–1) ⁄αi(tk).  
 
Step 9 
Go to step 2. 
 
For better understanding, the flow chart of the 
above algorithm is presented in Figure 3. 
 
6. The illustrative example 
 

In this section we present the results obtained by 
implementing the algorithm from Section 5. 
Since the program implementing the algorithm is 
still under development, its current version cor-
responds to a simplified system model with the 
following features. 
• The components are identical and mutually 

independent, i.e. the aging rate of a compo-
nent is independent of the states of other 
components. As a consequence, Si(tk) does not 
need to be updated when ei remains in state 1 
and a component in Z(i) fails or is repaired at 
tk (see step 8). 

• All the components are non-repairable, thus a 
component is always replaced after failure 
with no regard to its age, i.e. the parameter  
 

•  

 
 
Figure 3. Flow chart of the simulation algorithm. 
 

RL[i] is not defined for ei, however, the pa-
rameter OL[i] remains valid. 

• When ei enters state 1 or 0, Si(t) is simulated 
using the functions L(i, E) and R(i, E), where 
E = 0. This is because failed components are 
replaced with new ones whose effective age is 
equal to zero. Further, we assume that the 
time it takes to replace a component is not re-
lated to its effective age at failure.  

• Each component’s failures are self-revealing, 
i.e. rev[i] = 1 for i = 1,…,n. As a conse-
quence, there is no need for inspections, and 
there are only two non-negative states, i.e. 1 
and 0. 

• The system parameters have the following 
values: 
Number of components (n): 5 
Type of TTF’s distribution: Weibull 
Scale parameter: 0.05 
Shape parameter: 1.5 

k ← k + 1 

Set the initial values of all the variables, then  
generate Si(t0) for i = 1,2,…,n 

Assign Yi(tk – 1) to Yi(tk) for i∈{1,2,…,n} 

Compute tk – tk–1 by taking the smaller of the values 
given by (2) and (3). Also compute Ai(tk) and Ei(tk) for 

i such that Yi(tk–1) ≠ 0 

Compute Yi(tk) for each ei not awaiting maintenance 
at tk–1 and changing its state at tk 

If av_mt>0, start servicing at most av_mt components 
according to priority and place in the queue, i.e. set 

their states to 0, then update av_mt and the parame-
ters of the maintenance queue 

Compute K(tk) by adding the cost incurred in the 
interval (tk–1, tk] to K(tk–1) 

Obtain Si(tk) if at tk the state of ei changes to  
non-negative, or if ei remains in state 1, but the state 
of at least one ej in Z(i) is changed. Otherwise assign 

Si(tk–1) – (tk – tk–1) to Si(tk) 
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Type of TTR’s distribution: Weibull 
Scale parameter: 0.5 
Shape parameter: 1.5 
Unit of time: 1 day 
Number of service queues (Q): 2 
Components assigned to queue 1 (highest pri-
ority): e1, e2, e3 
Components assigned to queue 2: e4, e5 
Number of service teams (MT): 1, 2, 3; 
Krplc[i]: 1000; 
Kfail[i]: 4000; 
k≤ 0[i]: 900; 
kteam: 40. 

We adopt the two-parameter version of the 
Weibull distribution, i.e. the random variable W 
is Weibull-distributed if its CDF is expressed as 
follows: 
 
Pr(W ≤ t) = 1 – exp[ –(λt)α] (8) 
 
where λ is the scale and α is the shape parame-
ter. Thus, the location parameter is assumed to be 
zero. Note that in the provided example α = 1.5, 
i.e. α > 1. This is an intended choice, because 
preventive replacements are only justified if the 
distribution of the component’s TTF belongs to 
the IFR class (Barlow & Proschan, 1975). As 
well known, the distribution defined by (6) has 
the IFR property if and only if α > 1. Other dis-
tributions of TTF and TTR are studied in (Barlow 
& Proschan, 1975) and (O’Connor & Kleyner, 
2011). 
The presented simulation algorithm was used for 
the purpose of finding the optimal values of the 
age limit for a component’s operation and the 
number of service teams, i.e. the values of OL[i] 
and MT minimizing klong – the long run operating 
cost per unit time. Let OL*[i] be the optimal age 
limit for ei. Since all the five components are 
assumed to be stochastically identical, it is rea-
sonable to take OL[1] = … = OL[5] = OL and 
find OL* = OL*[1] = … = OL*[5] by computing 
the cost functional for a wide range of the values 
of OL and choosing the OL for which the func-
tional attains its minimum. The obtained results 
are shown in Table 1. 
The parameter k_max is the number of iterations 
of the main loop (see step 2). The values of klong 
are computed for k_max = 10000 and 
k_max = 100000. In the first case klong reaches its 
minimum for OL = 21 and MT = 2. However,  
 

Table 1. The values of klong for various OL and MT 
(the asterisk indicates the local minimum of klong) 
 

OL k_max = 10000 
klong for MT = 1, 2, 3 

k_max = 100000 
klong for MT = 1, 2, 3 

60 1815, 1732, 1801 1792, 1747, 1786 
50 1778, 1721, 1783 1790, 1743, 1777 
45 1807, 1715, 1776 1784, 1737, 1787 
40 1774, 1725, 1788 1774*, 1739, 1772 
35 1776, 1734, 1777 1782, 1725, 1765 
34 1799, 1743, 1769 1778, 1726, 1763 
33 1763, 1759, 1750 1794, 1722, 1757 
32 1771, 1739, 1762 1786, 1724, 1752 
31 1769, 1721, 1764 1774*, 1724, 1759 
30 1771, 1717, 1753 1781, 1713*, 1753 
29 1766, 1704, 1758 1779, 1720, 1748 
28 1776, 1714, 1728 1782, 1718, 1746 
27 1777, 1702, 1739 1784, 1720, 1759 
26 1779, 1727, 1754 1788, 1719, 1742* 
25 1776, 1704, 1746 1789, 1709*, 1750 
24 1781, 1709, 1758 1787, 1719, 1748 
23 1795, 1693, 1792 1800, 1716, 1747 
22 1814, 1690, 1763 1807, 1717, 1742* 
21 1790, 1681*, 1725 1808, 1714, 1754 
20 1796, 1737, 1743 1813, 1717, 1759 
19 1835, 1725, 1760 1829, 1729, 1756 
18 1846, 1730, 1772 1844, 1732, 1759 

 
klong behaves unsteadily between OL = 18 and 
OL = 60 (it has several local minima in that in-
terval for each MT = 1,2,3), therefore we need to 
increase the optimization accuracy by taking a 
larger k_max. The computations carried out for 
k_max = 100000 show that klong is not unimodal 
w.r.t. OL for a fixed MT, and has several local 
minima. It can be seen that klong attains its mini-
mum for MT = 2 and OL = 25. It is also interest-
ing that there are two optimal values of OL if MT 
is equal to 1 or 3, namely OL = 31, 40 for 
MT = 1, and OL = 22, 26 for MT = 3.  
For better illustration, the numerical results from 
Table 1 are presented in Figures 4–5. It can be 
seen that, as expected, increasing k_max leads to 
smoother cost curves. By taking still larger val-
ues of k_max the noise due to insufficient sam-
pling would be further reduced, and the position 
of the minimum would be determined with even 
better accuracy. Also note that the presented re-
sults are obtained for a simplified model, thus 
adding to the model’s complexity would ade-
quately increase the satisfactory value of k_max. 
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Figure 4. The graphs of klong for k_max = 10k and 
three values of MT. 
 

 
 
Figure 5. The graphs of klong for k_max = 100k and 
three values of MT. 
 
7. Conclusion 
 

We have presented a versatile algorithm simulat-
ing the process of operation and maintenance of 
a complex technical system, designed for the 
purpose of computing its operation costs and 
optimizing the operation parameters. It is intend-
ed to be used where, due to the system’s com-
plexity, analytical methods are inapplicable, but 
the optimal values of the decision parameters can 
be estimated by repeated Monte Carlo simula-
tion. 
The demonstrated algorithm is similar to that 
presented in (George–Williams & Patelli, 2015). 
However, it is different, because our algorithm 
determines consecutive time points when com-
ponents change their operational states, along 
with the respective components’ new states. As a 
consequence, the time axis becomes divided into 

a sequence of intervals such that no component 
changes its state within any of them. This allows 
for a very detailed analysis of the system opera-
tion process. Another advantage of our method is 
the possibility of considering the dependence of 
a component’s aging rate on the states of other 
components. Also, the possible states of a com-
ponent are different in the above-cited paper, but 
our model can be easily modified to comply with 
the one considered there. Last but not least, the 
model considered in this paper adopts a realistic 
assumption that, due to limited service personnel, 
failed components may wait in a service queue 
for being repaired or replaced. 
Although we define the system operating cost as 
the sum of costs related to individual compo-
nents, we can include the system state, expressed 
as a given function of the components’ states 
(known as the structure function), in the total 
cost calculation. Other key characteristics, such 
as the system’s availability, can also be easily 
calculated, similarly as in step 7 of the algorithm. 
As is well known, the main disadvantage of sto-
chastic simulation is its high time complexity. 
The program implementing the simplified ver-
sion of the algorithm, outlined in Section 6, exe-
cutes in about 8 seconds for k_max = 10000, and 
in about 80 seconds for k_max = 100000 (on a 
machine with Intel® Core™ i5–7400 CPU). This 
agrees with the expectation that the algorithm’s 
run time grows linearly with k_max. Admittedly, 
the times given above are rather short for a Mon-
te Carlo simulation, the reason being a small 
number of components (5). If that number 
changes to 10, the run time increases to 15 sec-
onds for k_max = 10000, which means that the 
algorithm’s time complexity in relation to n is 
somewhat less than O(n). This is because the 
steps 3–5 and 7–8 are realized as “for” loops 
with n iterations, while step 6 takes at most 
Q⋅MT basic operations (see its code), and usually 
Q⋅MT is much smaller than n. Clearly, a growing 
number of components and their diversity result 
in the corresponding increase of k_max necessary 
to determine the optimum values of the decision 
variables with the required accuracy. However, 
components of many complex systems can be 
grouped into sets of components with identical 
parameters, which decreases the number of deci-
sion variables and lowers the optimization pro-
cedure’s complexity. 
To sum up, an attempt has been made to con-
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struct a possibly comprehensive maintenance 
model of a complex technical system and devel-
op an algorithm simulating the operation process 
of thus modelled system. The author’s intention 
was to encompass a wide range of maintenance 
models to be found in the relevant literature, and 
to provide a relatively simple tool for improving 
the cost-effectiveness of system operation and 
maintenance. This aim seems to have been (at 
least in part) achieved, but there is still signifi-
cant work to do. The future research should more 
broadly consider the issue of inter-component 
dependence, i.e. define in more detail how the 
aging rate of ei is influenced by the states of 
components in Z(i). The above issue has been 
studied in (Zhang & Horigome, 2001; Dukhovny 
& Marichal, 2012; Yang et al., 2013; Nakamura 
et al., 2017; Zhang & Wilson, 2017), from where 
some ideas can be borrowed. Also, the algorithm 
should take multiple failure modes into account. 
Then, for a given component, its failure is self-
revealing or not depending on the mode of the 
failure. Finally, the extended model should take 
into consideration the influence of ambient con-
ditions (e.g. temperature, humidity, salinity etc.) 
on the components’ aging rates. 
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