

Safety and Reliability of Systems and Processes, Summer Safety and Reliability Seminar 2021.
© Gdynia Maritime University. All rights reserved.
DOI: 10.26408/srsp-2021-15.

293

Malinowski Jacek, 0000-0002-4413-1868
Systems Research Institute, Polish Academy of Sciences, Warsaw, Poland,
jacek.malinowski{at}ibspan.waw.pl

Comprehensive model of operation process of complex technical system
designed for simulation purposes

Keywords

system, operation process, dependent components, maintenance policy, discrete-event simulation,
optimization

Abstract

In this chapter the author presents a comprehensive model of a multi-component technical system
aimed at simulating and optimizing its operation process. Among other things, the model postulates
load-related dependencies between the system’s components and delayed repairs or replacements
scheduled according to the components’ priorities, where delays result from limited maintenance per-
sonnel. During the last several decades researchers in the field of reliability theory constructed vari-
ous maintenance models, more or less applicable to real systems. Many authors follow purely analyti-
cal approach which, due to restrictive assumptions adopted for the purpose of analytical tractability,
results in limited applicability of the considered models. These assumptions include: mutually inde-
pendent components, exponentially distributed time-to-failure and time-to-repair, repairs started im-
mediately after failures or carried out in negligible time, etc. The model proposed here does not im-
pose such limitations, because it is designed to use simulation rather than analytical methods for com-
puting purposes. The following assumptions bring the model closer to reality in comparison with its
counterparts from the literature: 1) components are mutually dependent, i.e. a component’s failure
rate can depend of the states of some other components 2) after a repair a component can be “as good
as new”, “as good as used” or “as good as old” (perfect, imperfect, or minimal repair) 3) if mainte-
nance personnel is busy, newly failed components await repair in a priority queue, 4) the state of a
component may be hidden and its failure can only be revealed by inspection. The chapter’s main result
is a quite elaborate algorithm simulating the modeled system’s behavior over time. Examples are giv-
en how, based on the proposed model and the adopted maintenance policy, selected reliability-related
parameters can be optimized by repeated simulation. Although computationally intensive, the simula-
tion approach allows to find performance and reliability characteristics for systems whose complexity
or way of functioning rule out the application of analytical methods.

1. Introduction

During the past decades many reliability re-
searchers designed and analyzed various mainte-
nance models with the aim of finding optimal
values of the maintenance parameters. The sur-
veys of earlier and recent publications on
maintenance modeling and optimization can be
found in (Alabdulkarim et al., 2013; Chouhan et

al., 2013; Nakagawa, 2008; Nakamura et al.,
2017; Riane et al., 2009; Sarkar et al., 2011;
Wang, 2002). Many works in this area endeav-
ored to obtain exact analytical solutions, but the
requirement of analytical tractability made it
necessary to impose quite restrictive assumptions
on the adopted models (components’ independ-
ence, exponentially distributed time-to-failure

Malinowski Jacek

294

and time-to-repair, repairs started immediately
after failures). The maintenance model proposed
in this chapter is free from the above constraints,
because it is mainly designed for the purpose of
simulating the system’s operating process rather
than deriving analytical formulas allowing to
compute and optimize its reliability parameters.
Admittedly, there exists a considerable number
of publications regarding simulation of operation
and maintenance processes, but they are mostly
branch of industry-specific (Dietrich et al., 2017;
Lyubchenko et al., 2020; Münsterberg, 2017;
Panteleev et al., 2014; Soltanali et al., 2019;
Vishnu & Regikumar, 2016), while there is ra-
ther a lack of literature on modelling and analys-
ing generic processes. Lu et al. (Lu et al., 2019)
is one of a few papers filling this gap. The cur-
rent paper aims to build a possibly universal,
widely applicable model allowing to detail the
chronology of all events in the considered pro-
cess and perform its technical and cost analysis.
Thus, it takes the discrete-event simulation ap-
proach to maintenance modelling.
Let us begin with formulating the rules according
to which the considered system operates. It is
assumed that its components can be either fully
operable or failed, and are interdependent in a
certain sense. This means that the failure rate of a
component can depend on the states of some
other components, and a component’s failure can
cause some other components’ failures. After a
failure, a component is either replaced or re-
paired depending on its accumulated wear de-
fined as the integral of the component’s wear rate
over time. More accurately, the integration inter-
val starts at the moment when the new compo-
nent is installed and ends at the moment when it
fails. A component’s replacement also takes
place when the component reaches its age or
wear limit, even if still in operable state (preven-
tive replacement). Due to a limited number of
maintenance personnel, a failed component can
possibly wait in a queue for being serviced. The
queue is organized on a priority basis which
means that the higher priority components have
precedence over the lower priority ones. Howev-
er, for the sake of computer implementation, it is
more convenient to have several queues, each
one being a FIFO sequence with components of
equal priority.
We will now outline the procedure simulating
the behavior of a multi-component system oper-

ating in line with the above assumptions. The
system starts working at time t0 = 0, with all the
components being new and fully operable. The
procedure generates a sequence of time points in
which components change their states. Hence, if
a certain component changes its state at tk, then
tk+1 is the next instant at which the same or an-
other component changes its state, k ≥ 1. Alt-
hough we distinguish only two “functional”
states of a component – working and failed, the
model also defines a number of states for a failed
component, as set out in Section 3. Thus, a state
change of a component occurs when one of the
following events takes place:
• it fails,
• its hidden failure is detected,
• it reaches operating-age limit,
• its repair or replacement is completed.
We distinguish two types of failures – self-
revealing and hidden ones. A failure of the latter
type can be detected only during an inspection or
when the component is preventively replaced,
and until then it remains unrevealed. The proba-
bility that a failure is of one or the other type is
known for each component. If this probability is
equal to one, the component is subject to failures
of one type only. When a failure is revealed, the
component undergoes a repair or replacement,
provided that the maintenance personnel is avail-
able, otherwise it is scheduled for repair or re-
placement and awaits its turn in a maintenance
queue, according to the rules given in Section 4.
The presented maintenance model has several
adjustable parameters. One of them is the age
limit for a component’s repair; if a component is
found to be failed before this limit is reached, it
will be repaired, otherwise it will be replaced.
The second key parameter is the age limit for a
component’s operation; on reaching this limit the
component will be preventively replaced, alt-
hough still operable. The limit for operation
should exceed the limit for repair, because a
component too old to be repaired if failed can be
too new to be replaced if operable. Other tunable
parameters include the number of maintenance
personnel and the time between consecutive in-
spections necessary to reveal hidden failures.
Each failure and maintenance action incurs a
cost, and so does remaining of a component in a
failed state. The system operator’s task is to min-
imize the total operating cost during a specific
time period, or the long-run operating cost per

Comprehensive model of operation process of complex technical system
designed for simulation purposes

295

unit time. Either of the above costs is the objec-
tive function of the implicit optimization prob-
lem whose solution consists in finding the opti-
mal values of the adjustable parameters defined
in the previous paragraph, which are the prob-
lem’s decision variables. According to the adopt-
ed notation (see Section 2) these are the parame-
ters RL[i], OL[i], MT and T. Clearly, there can be
more decision variables if the present model is
extended. However, due to the model’s complex-
ity, it is not possible to find the exact solution of
the considered optimization problem by means of
an analytical method. Instead, the sought values
will be obtained numerically with the use of re-
peated simulation, hence they will be quasi-
optimal rather than optimal.
The rest of the chapter is organized as follows. In
Section 2 the used notation is presented. Section
3 describes the life cycle of a single component
from the start of operation to the completion of
repair or replacement. Section 4 sets out the de-
tailed rules for the system’s operation. Based on
these rules the algorithm simulating the system
operation process is presented in Section 5. For
illustration, the numerical results of its simplified
version are discussed in Section 6, and the opti-
mal values of two decision parameters – OL[i]
and T – are found. The chapter is finished with
Section 7 containing several conclusions and
prospects for future work.

2. Notation and definitions

CDF – cumulative distribution function,
IFR – increasing failure rate,
PDF – probability density function,
TTF – time-to-failure,
TTR – time-to-repair,
n – number of components in the system,
e1,…,en – the individual components,
Q – number of different maintenance priority
levels (maintenance queues),
len[q] – the current length of the q-th mainte-
nance queue, q = 1,2,…,Q,
mq[i] – the number of maintenance queue to
which ei is assigned,
ndx[q, r] – the index of the component waiting in
place r in queue q,
MT – the number of maintenance teams em-
ployed,
av_mt – the number of currently available
maintenance teams,

Z[i] – set of components whose states can impact
the wear rate of ei. It should be noted that i ∉Z[i],
rev[i] – the binary variable determining whether
failures of ei are self-revealing, if they are, then
rev[i] = 1, else rev[i] = 0,
T – the time between two consecutive inspec-
tions performed in order to reveal hidden failures
of the components for which rev[i] = 0,
Xi(t) – the functional state of ei at time t, Xi(t) = 1
if ei is in operation, and Xi(t) = 0 if ei is failed or
under maintenance,
Yi(t) – the detailed state of ei at time t, Yi(t) = –1
when ei is awaiting repair, Yi(t) = 0 when ei is
being repaired or replaced, Yi(t) = 1 when ei is in
operation, and Yi(t) = 2 when ei is in the state of
undetected failure,
Ai(t) – the actual age of ei at time t, given by
t – s, where s is the moment when ei starts to
operate as a new or replaced component,
αi(t) – the aging rate of component ei at time t,
αi(t) depends on Xi(t) and the functional states of
the components in Z[i] at time t, thus αi(t) can
vary over time. The aging rate of a component
under repair is assumed to be zero,
Ei(t) – the effective age of ei at time t, expressed
by the integral ∫[s,t] αi(u) du, where s is the mo-
ment when ei starts to operate as a new or re-
placed component,
RL[i] – age limit for the repair of ei: if a failure
of ei is revealed at time t and Ai(t) ≥ RL[i] then ei
is deemed too old to be repaired and must be
replaced,
OL[i] – age limit for the operation of ei: the still
operable ei must be replaced at time t when Ai(t)
reaches OL[i] (preventive replacement), as point-
ed out earlier, OL[i] > RL[i],
L(i, E) – the function generating the remaining
lifetime of the operable ei, provided that its effec-
tive age equals E and its aging rate is constant
and equal to 1, L(i, E) returns a random value
and is called when the new, repaired, or replaced
ei starts operating. For example, if L(i, E) is to
return a Weibull distributed random value, where
σi is the shape parameter and the scale parameter
expressing the aging rate of ei is equal to 1, then
 (,) = [− ln(1 −)] / − , (1)

U being the random value of the uniform distri-
bution. Equation (1) is obtained using the inverse
CDF of the Weibull distribution,

Malinowski Jacek

296

R(i, E) – the function generating the time length
of ei’s repair (A < RL[i]) or replacement
(A ≥ RL[i]), where E is the effective age of ei,
R(i, E) returns a random value and is called when
a repair or replacement of ei begins,
Si(t) – the time elapsing from t to the next state
change of ei, provided that Yi(t) ≥ 0, the aging
rate of ei remains unchanged after t if Yi(t) = 1,
and no preventive replacements are carried out.
Let us note that the actual time to the next state
change of ei can differ from Si(t), because ei’s
aging rate can vary due to possible state changes
of the components in Z[i]. In view of the preced-
ing definitions we have:
 () = , () ()⁄ | (t) = 1 , () | (t) = 0 (2)

if ei enters state 1 or 0 at time t, and
 () = ⌈ / ⌉ ⋅ − (3)

if Yi(t) = 2, where ⋅ denotes the least integer
upper bound. Si(t) has to be recalculated when ei
is operable and a component in Z(i) changes its
functional state (the details are given further in
the chapter),
Kfail[i], Krpr[i], Krplc[i] – the cost of ei’s failure,
repair or replacement,
k2[i] – the cost per unit time incurred due to re-
maining of ei in state 2 (unrevealed failure),
k≤0[i] – the cost per unit time incurred due to
remaining of ei in state ≤ 0 (awaiting or under
service),
kteam – labor cost of one team per unit time,
K(t) – the total operating cost incurred up to
time t,
klong – the long run operating cost per unit time,
defined as lim t→∞ K(t)/t.

3. The life cycle of a single component

The state changes of a single component occur
according to a random process with the state-
space {−1, 0, 1, 2}, i.e. the state of ei at time t is
expressed by the random variable Yi(t) defined as
follows:
Yi(t) = –1: ei is queued for service,
Yi(t) = 0: ei is undergoing repair or replacement,
Yi(t) = 1: ei is in operable condition,
Yi(t) = 2: ei is in the state of unrevealed failure.

If Yi(t) = –1, then ei is awaiting maintenance in
the queue mq[i], and is moved forward as the
components preceding ei are taken for repair or
replacement. Let us note that if r is the place of ei
in the queue mq[i], then ndx[mq[i], r] = i. This
equality will be used in step 5 of the algorithm
presented in Section 5. The inter-state transitions
of a component are illustrated in Figure 1.

Figure 1. Possible transitions between a component’s
states.

Direct transition from 1 to 0 or from 2 to 0 takes
place if a maintenance team is available when a
component’s failure is self-revealed or revealed
by an inspection. For a component with no hid-
den failures the diagram in Figure 1 is simpler,
because it does not contain the node representing
state 2, as well as the arcs connected with it.
The diagram in Figure 2 illustrates the behavior
of a component in the maintenance queue, i.e.
placing a component in the queue, moving it
ahead, and taking it for repair or replacement.

Figure 2. Dynamics of a maintenance queue.

Places in the queue are indicated with negative
numbers that must not be confused with a com-
ponent’s states (however, note that if a compo-
nent is in place –1, its state is also –1). The dia-
gram doesn’t illustrate situations when multiple
components leave the queue at the same time

–1 –k –k+1 –2

 1, 2

0

⋅ ⋅ ⋅

 –1 0

 2

 1

Comprehensive model of operation process of complex technical system
designed for simulation purposes

297

(such an event has probability 0 if components
are serviced independently of each other). If
simultaneous transitions to state 0 were taken
into account, the diagram would have to include
transitions from –k to min(–k + s, 0), where k ≥ 2
and 2 ≤ s ≤ av_mt, which would increase its
complexity.

4. The rules for the system’s operation

Since failures of some components are hidden
(rev[i] = 0), it is necessary to perform regular
inspections in order to reveal failed components
and repair or replace them. Such inspections are
performed every T time units, where T is one of
the parameters that can be optimized. Let us as-
sume that t is the time point when a self-
revealing failure occurs or a hidden one is de-
tected. If a maintenance team is available at t, the
failed component (say ei) is taken for repair
(Ai(t) < RL[i]) or replacement (Ai(t) ≥ RL[i]). If
all maintenance teams are busy, ei is placed in
the respective maintenance queue, whose number
is given by mq[i]. Besides, when a component’s
actual age reaches OL[i], the component is taken
or scheduled for replacement, even if still opera-
ble. Let us note that ei can be in the state of unde-
tected failure, and thus inoperable, when its actu-
al age reaches OL[i].
A component that cannot be serviced immediate-
ly when its failure occurs or is detected (due to
temporal unavailability of maintenance person-
nel) is placed in one of Q maintenance queues,
according to its maintenance priority. As men-
tioned earlier in this section, the maintenance
priority of ei (its respective queue number) is
given by mq[i] which belongs to the set
{1,2,…,Q}. Each queue contains components
with equal priorities and is managed on a first-in-
first-out basis. The components in queue no. q
are serviced before those in queue no. q + 1,
where 1 ≤ q ≤ Q – 1. The detailed state of a com-
ponent waiting in a maintenance queue is equal
to –1, i.e. Yi(t) = –1 if ei is failed and waiting to
be serviced. In turn, the index of the component
waiting in place r in queue q is given by
ndx[q, r], and len[q] denotes the length of queue
q. The arrays mq[⋅], ndx[⋅] and len[⋅] are needed
by the simulation algorithm.
The components placed in maintenance queues
wait until one of the maintenance teams becomes
available, then the first to be serviced (say ei in

queue mq[i]) is taken for repair or replacement,
and those remaining in the queue are moved one
place forward. If Ai(t) < RL[i], where t is the time
when ei leaves the queue, then ei will be repaired,
otherwise (Ai(t) ≥ RL[i]) it will be replaced. Let
us note that the age of ei can be less than RL[i]
when ei fails, but, due to waiting in the queue or
remaining in state 2 (undetected failure), the age
of ei can exceed RL[i] when ei is taken for servic-
ing. Thus, a component suitable for repair at fail-
ure can be no more suitable when its servicing
starts. Also note that the actual age of ei has to be
known in order to decide whether it should be
either repaired or replaced, or to stop the opera-
tion of ei when its actual age reaches OL[i].
Therefore it is necessary for each component to
record the time when it is first put in operation.

5. The simulation algorithm

According to the assumptions listed in the intro-
duction, an algorithm for simulation of the sys-
tem operation process has been constructed. Its
main function is to generate the sequence of time
points at which the system components change
their detailed states, i.e. the sequence (tk, k ≥ 1),
where tk is the k–th instant at which any such
change occurs. The algorithm runs in a loop
whose body is composed of the following steps.

Step 1
Assign initial values to all the variables quantify-
ing the system operation process. This is realized
by the following pseudocode.

k←0; t0 ← 0; av_mt ← MT;
for q = 1,…,Q do {
 len[q] ← 0;
}
for i = 1,…,n do {
 Yi(t0) ← 1; Ai(t0) ← 0; Ei(t0) ← 0; K(t0) ← 0;
 Si(t0) ← L(i,0)/αi(t0);
}

At t0 = 0 all components are operable (Yi(t) = 1
for i = 1,2,…,n) and their effective age is equal
to 0, therefore their anticipated sojourn times in
the operable state are generated using L(i, 0).

Step 2
If k = k_max, stop. Otherwise add 1 to k.

Malinowski Jacek

298

Step 3
Compute tk – tk–1 as the smaller of the following
two values:

min () | : () ≥ 0 (4)

and

min [] − () | : () ≥ 1 . (5)

The first minimum is computed over all i such
that ei is in a non-negative state at tk–1, and the
second – over all i such that ei is operable or its
failure is unrevealed at tk–1. It is easy to check
that tk is the first moment after tk–1 when
any state change occurs. Note that the compo-
nents queued for maintenance are irrelevant to
the value of tk. Further, if Yi(tk–1) = 1 and
Si(tk–1) ≤ OL[i] – A(tk–1), put

fail[i] ← 1,

otherwise put

fail[i] ← 0.

The variable fail[i] determines whether ei fails at
tk and is used in step 7 (cost calculation). Finally,
for each i such that Yi(tk–1) ≠ 0, put

Ai(tk) ← Ai(tk–1) + (tk – tk–1)

and

Ei(tk) ← Ei(tk–1) + αi(tk–1)⋅(tk – tk–1).

If, in turn, Yi(tk–1) = 0 then put Ai(tk) ← Ai(tk–1)
and Ei(tk) ← Ei(tk – 1), because neither actual nor
effective age of a component increases when it is
under maintenance.
For clarity, the code realizing step 3 is presented
below.

tk ← tk–1 + min [(4), (5)];
for i = 1,…,n do {
 if (Yi(tk–1) = 1 and Si(tk–1) ≤ OL[i] – A(tk–1))
 then {
 fail[i] ← 1;
 }

 else {
 fail[i] ← 0;
 }
 if (Yi(tk–1) ≠ 0) then {
 Ai(tk) ← Ai(tk–1) + (tk – tk–1);
 Ei(tk) ← Ei(tk–1) + αi(tk–1)⋅(tk – tk–1);
 }
 else {
 Ai(tk) ← Ai(tk–1);
 Ei(tk) ← Ei(tk – 1);
 }
}

Step 4
Assign Yi(tk–1) to Yi(tk) for each i∈{1,2,…,n};
this operation ensures that the components which
do not change their states at tk will retain them in
the interval [tk, tk+1).

Step 5
Compute Yi(tk) for each ei such that Yi(tk–1) ≥ 0
and Yi(tk) ≠ Yi(tk–1), i.e. ei is not awaiting service
in the interval [tk–1, tk) and its next state change
(relative to tk–1) takes place at tk∗. Note that every
such ei fulfills either of the following conditions:

min(Si(tk–1), OL[i] – Ai(tk–1)) = tk – tk–1 (6)

for i such that Yi(tk–1) ≥ 1, or

Si(tk–1) = tk – tk–1 (7)

for i such that Yi(tk–1) = 0. If ei fulfills (6) or (7),
its state at tk is determined as follows:
a) if Yi(tk–1) = 2 then ei is placed in the mainte-

nance queue at tk, i.e. ei changes its state to –1
at tk,

b) if Yi(tk–1) = 1 then ei changes its state to 2 at tk,
provided that rev[i] = 0 and an inspection or
preventive replacement is not planned at tk,
otherwise ei changes its state to –1 at tk,

c) if Yi(tk–1) = 0 then ei’s repair or replacement is
completed at tk, i.e. ei changes its state to 1
at tk.

∗ If ei is awaiting service in interval [tk–1, tk), then it

can change its state at tk only if servicing of at least
one component is finished at tk. Thus, a change of
ei’s state or place in the queue is secondary relative
to state changes of components passing from state 0
to state 1. For this reason, the states or places in the
queues of the components awaiting service are up-
dated in the next (sixth) step.

Comprehensive model of operation process of complex technical system
designed for simulation purposes

299

In case (c) the variable av_mt is increased by the
number of components changing their states to 1
at tk. Moreover, if ei’s replacement rather than
repair ends at tk, the actual and effective age of ei
is set to 0. Let us note that ei’s replacement be-
gins at t < tk, thus Ai(t) ≥ RL[i] and, since Ai(t)
does not change in [t, tk), it holds that
Ai(tk) = Ai(t). The code implementing step 5 is
given below.

for i = 1,2,…,n do {
 if (Yi(tk–1) = 1 and (6) holds) then {
 if (rev[i] = 0 and tk < tk /T ⋅ T and
 Ai(tk) < OL[i]) then {
 Yi(tk) ← 2;
 }
 else {
 q ← mq[i]; len[q] ← len[q] + 1;
 ndx[q, len[q]] ← i; Yi(tk) ← –1;
 }
 }
 if (Yi(tk–1) = 2 and (6) holds) then {
 q ← mq[i]; len[q] ← len[q] + 1;
 ndx[q, len[q]] ← i; Yi(tk) ← –1;
 }
 if (Yi(tk–1) = 0 and (7) holds) then {
 Yi(tk) ← 1; avl_r ← avl_r + 1;
 if (Ai(tk) ≥ RL[i]) then {
 Ai(tk) ← 0; Ei(tk) ← 0;
 }
 }
}

Step 6
If av_mt > 0, the states of at most av_mt first-to-
be-serviced components are set to 0 at tk, then
av_mt and the maintenance queue parameters are
updated accordingly. This task is accomplished
by the code below:

if av_mt > 0 then {
 for q = 1,2,…,Q do {
 aux ← min(av_mt, len[q]);
 for r = 1,2,…,aux do {
 Yndx[q, r] ← 0;
 ndx[q, r] ← ndx[q, r + aux];
 }
 len[q] ← len[q] – aux;
 av_mt ← av_mt – aux;
 if av_mt = 0 then break;
 }
}

Step 7
Compute K(tk) by adding the cost incurred during
(tk–1, tk] to K(tk–1). This is realized as follows:

K(tk) ← K(tk–1) + (tk – tk–1)⋅MT⋅kteam ;
for i =1,2,…,n do {
 if (Yi(tk–1) ≤ 0) then {
K(tk) ← K(tk) + (tk – tk–1)⋅k≤0[i];
 }
 if (Yi(tk–1) = 2) then {
 K(tk) ← K(tk) + (tk – tk–1)⋅k2[i];
 }
 if (Yi(tk–1) ≠ 0 and Yi(tk) = 0) then {
 if (Ai(tk) < RL[i]) then {
 K(tk) ← K(tk) + Krpr[i];
 }
 else {
 K(tk) ← K(tk) + Krplc[i];
 }
 }
 if (Yi(tk–1) = 1 and Yi(tk) ≠ 1 and
 fail[i] = 1) then {
 K(tk) ← K(tk–1) + Kf[i];
 }
}

Remark 1. The cost of repair or replacement is
added when either of these actions starts at tk,
because it is uncertain, prior to computing tk,
whether the actual age of ei at tk has reached
RL[i].
Remark 2. The last IF command adds Kf[i] to
K(tk), provided that ei fails at tk. This is deter-
mined by the variable fail[i] whose value is as-
signed in step 3.

Step 8
Obtain Si(tk) if at tk the state of ei changes to non-
negative, or ei remains in state 1, but at least one
ej in Z(i) changes its state. Otherwise put

Si(tk) ← Si(tk–1) – (tk – tk–1).

The following piece of code realizes step 8:

for i = 1,2,…,n do {
 if (Yi(tk) ≠ Yi(tk–1)) then {
 if (Yi(tk) = 0) then {
 Si(tk) ← R(i, Ei(tk));
 }

Malinowski Jacek

300

 if (Yi(tk) = 1) then {
 Si(tk) ← L(i, Ei(tk)) ⁄ αi(tk);
 }
 if (Yi(tk) = 2) then {
 Si(tk) ← tk /T ⋅ T – tk;
 }
 }

 else if (Yi(tk) = Yi(tk–1) = 1 and Yj(tk) ≠ Yj(tk–1)
 for at least one j ∈ Z[i]) then {
 Si(tk) ← [Si(tk–1) – (tk – tk–1)]⋅αi(tk–1) ⁄αi(tk);
 }

 else {
 Si(tk) ← Si(tk–1) – (tk – tk–1);
 }
}

Remark 1. If ei changes its state to 2 at tk, then
tk < tk /T⋅T and Ai(tk) < OL[i] in view of the rule
(b) in step 5, thus Si(tk) > 0.
Remark 2. If the state of ei remains unchanged at
tk, but the state of at least one ej, j ∈ Z(i), changes
at tk, then the aging rate of ei also changes and
the difference Si(tk–1) – (tk – tk–1) lengthens or
shortens depending on the ratio αi(tk–1) ⁄αi(tk).

Step 9
Go to step 2.

For better understanding, the flow chart of the
above algorithm is presented in Figure 3.

6. The illustrative example

In this section we present the results obtained by
implementing the algorithm from Section 5.
Since the program implementing the algorithm is
still under development, its current version cor-
responds to a simplified system model with the
following features.
• The components are identical and mutually

independent, i.e. the aging rate of a compo-
nent is independent of the states of other
components. As a consequence, Si(tk) does not
need to be updated when ei remains in state 1
and a component in Z(i) fails or is repaired at
tk (see step 8).

• All the components are non-repairable, thus a
component is always replaced after failure
with no regard to its age, i.e. the parameter

•

Figure 3. Flow chart of the simulation algorithm.

RL[i] is not defined for ei, however, the pa-
rameter OL[i] remains valid.

• When ei enters state 1 or 0, Si(t) is simulated
using the functions L(i, E) and R(i, E), where
E = 0. This is because failed components are
replaced with new ones whose effective age is
equal to zero. Further, we assume that the
time it takes to replace a component is not re-
lated to its effective age at failure.

• Each component’s failures are self-revealing,
i.e. rev[i] = 1 for i = 1,…,n. As a conse-
quence, there is no need for inspections, and
there are only two non-negative states, i.e. 1
and 0.

• The system parameters have the following
values:
Number of components (n): 5
Type of TTF’s distribution: Weibull
Scale parameter: 0.05
Shape parameter: 1.5

k ← k + 1

Set the initial values of all the variables, then
generate Si(t0) for i = 1,2,…,n

Assign Yi(tk – 1) to Yi(tk) for i∈{1,2,…,n}

Compute tk – tk–1 by taking the smaller of the values
given by (2) and (3). Also compute Ai(tk) and Ei(tk) for

i such that Yi(tk–1) ≠ 0

Compute Yi(tk) for each ei not awaiting maintenance
at tk–1 and changing its state at tk

If av_mt>0, start servicing at most av_mt components
according to priority and place in the queue, i.e. set

their states to 0, then update av_mt and the parame-
ters of the maintenance queue

Compute K(tk) by adding the cost incurred in the
interval (tk–1, tk] to K(tk–1)

Obtain Si(tk) if at tk the state of ei changes to
non-negative, or if ei remains in state 1, but the state
of at least one ej in Z(i) is changed. Otherwise assign

Si(tk–1) – (tk – tk–1) to Si(tk)

Comprehensive model of operation process of complex technical system
designed for simulation purposes

301

Type of TTR’s distribution: Weibull
Scale parameter: 0.5
Shape parameter: 1.5
Unit of time: 1 day
Number of service queues (Q): 2
Components assigned to queue 1 (highest pri-
ority): e1, e2, e3
Components assigned to queue 2: e4, e5
Number of service teams (MT): 1, 2, 3;
Krplc[i]: 1000;
Kfail[i]: 4000;
k≤ 0[i]: 900;
kteam: 40.

We adopt the two-parameter version of the
Weibull distribution, i.e. the random variable W
is Weibull-distributed if its CDF is expressed as
follows:

Pr(W ≤ t) = 1 – exp[–(λt)α] (8)

where λ is the scale and α is the shape parame-
ter. Thus, the location parameter is assumed to be
zero. Note that in the provided example α = 1.5,
i.e. α > 1. This is an intended choice, because
preventive replacements are only justified if the
distribution of the component’s TTF belongs to
the IFR class (Barlow & Proschan, 1975). As
well known, the distribution defined by (6) has
the IFR property if and only if α > 1. Other dis-
tributions of TTF and TTR are studied in (Barlow
& Proschan, 1975) and (O’Connor & Kleyner,
2011).
The presented simulation algorithm was used for
the purpose of finding the optimal values of the
age limit for a component’s operation and the
number of service teams, i.e. the values of OL[i]
and MT minimizing klong – the long run operating
cost per unit time. Let OL*[i] be the optimal age
limit for ei. Since all the five components are
assumed to be stochastically identical, it is rea-
sonable to take OL[1] = … = OL[5] = OL and
find OL* = OL*[1] = … = OL*[5] by computing
the cost functional for a wide range of the values
of OL and choosing the OL for which the func-
tional attains its minimum. The obtained results
are shown in Table 1.
The parameter k_max is the number of iterations
of the main loop (see step 2). The values of klong
are computed for k_max = 10000 and
k_max = 100000. In the first case klong reaches its
minimum for OL = 21 and MT = 2. However,

Table 1. The values of klong for various OL and MT
(the asterisk indicates the local minimum of klong)

OL k_max = 10000
klong for MT = 1, 2, 3

k_max = 100000
klong for MT = 1, 2, 3

60 1815, 1732, 1801 1792, 1747, 1786
50 1778, 1721, 1783 1790, 1743, 1777
45 1807, 1715, 1776 1784, 1737, 1787
40 1774, 1725, 1788 1774*, 1739, 1772
35 1776, 1734, 1777 1782, 1725, 1765
34 1799, 1743, 1769 1778, 1726, 1763
33 1763, 1759, 1750 1794, 1722, 1757
32 1771, 1739, 1762 1786, 1724, 1752
31 1769, 1721, 1764 1774*, 1724, 1759
30 1771, 1717, 1753 1781, 1713*, 1753
29 1766, 1704, 1758 1779, 1720, 1748
28 1776, 1714, 1728 1782, 1718, 1746
27 1777, 1702, 1739 1784, 1720, 1759
26 1779, 1727, 1754 1788, 1719, 1742*
25 1776, 1704, 1746 1789, 1709*, 1750
24 1781, 1709, 1758 1787, 1719, 1748
23 1795, 1693, 1792 1800, 1716, 1747
22 1814, 1690, 1763 1807, 1717, 1742*
21 1790, 1681*, 1725 1808, 1714, 1754
20 1796, 1737, 1743 1813, 1717, 1759
19 1835, 1725, 1760 1829, 1729, 1756
18 1846, 1730, 1772 1844, 1732, 1759

klong behaves unsteadily between OL = 18 and
OL = 60 (it has several local minima in that in-
terval for each MT = 1,2,3), therefore we need to
increase the optimization accuracy by taking a
larger k_max. The computations carried out for
k_max = 100000 show that klong is not unimodal
w.r.t. OL for a fixed MT, and has several local
minima. It can be seen that klong attains its mini-
mum for MT = 2 and OL = 25. It is also interest-
ing that there are two optimal values of OL if MT
is equal to 1 or 3, namely OL = 31, 40 for
MT = 1, and OL = 22, 26 for MT = 3.
For better illustration, the numerical results from
Table 1 are presented in Figures 4–5. It can be
seen that, as expected, increasing k_max leads to
smoother cost curves. By taking still larger val-
ues of k_max the noise due to insufficient sam-
pling would be further reduced, and the position
of the minimum would be determined with even
better accuracy. Also note that the presented re-
sults are obtained for a simplified model, thus
adding to the model’s complexity would ade-
quately increase the satisfactory value of k_max.

Malinowski Jacek

302

Figure 4. The graphs of klong for k_max = 10k and
three values of MT.

Figure 5. The graphs of klong for k_max = 100k and
three values of MT.

7. Conclusion

We have presented a versatile algorithm simulat-
ing the process of operation and maintenance of
a complex technical system, designed for the
purpose of computing its operation costs and
optimizing the operation parameters. It is intend-
ed to be used where, due to the system’s com-
plexity, analytical methods are inapplicable, but
the optimal values of the decision parameters can
be estimated by repeated Monte Carlo simula-
tion.
The demonstrated algorithm is similar to that
presented in (George–Williams & Patelli, 2015).
However, it is different, because our algorithm
determines consecutive time points when com-
ponents change their operational states, along
with the respective components’ new states. As a
consequence, the time axis becomes divided into

a sequence of intervals such that no component
changes its state within any of them. This allows
for a very detailed analysis of the system opera-
tion process. Another advantage of our method is
the possibility of considering the dependence of
a component’s aging rate on the states of other
components. Also, the possible states of a com-
ponent are different in the above-cited paper, but
our model can be easily modified to comply with
the one considered there. Last but not least, the
model considered in this paper adopts a realistic
assumption that, due to limited service personnel,
failed components may wait in a service queue
for being repaired or replaced.
Although we define the system operating cost as
the sum of costs related to individual compo-
nents, we can include the system state, expressed
as a given function of the components’ states
(known as the structure function), in the total
cost calculation. Other key characteristics, such
as the system’s availability, can also be easily
calculated, similarly as in step 7 of the algorithm.
As is well known, the main disadvantage of sto-
chastic simulation is its high time complexity.
The program implementing the simplified ver-
sion of the algorithm, outlined in Section 6, exe-
cutes in about 8 seconds for k_max = 10000, and
in about 80 seconds for k_max = 100000 (on a
machine with Intel® Core™ i5–7400 CPU). This
agrees with the expectation that the algorithm’s
run time grows linearly with k_max. Admittedly,
the times given above are rather short for a Mon-
te Carlo simulation, the reason being a small
number of components (5). If that number
changes to 10, the run time increases to 15 sec-
onds for k_max = 10000, which means that the
algorithm’s time complexity in relation to n is
somewhat less than O(n). This is because the
steps 3–5 and 7–8 are realized as “for” loops
with n iterations, while step 6 takes at most
Q⋅MT basic operations (see its code), and usually
Q⋅MT is much smaller than n. Clearly, a growing
number of components and their diversity result
in the corresponding increase of k_max necessary
to determine the optimum values of the decision
variables with the required accuracy. However,
components of many complex systems can be
grouped into sets of components with identical
parameters, which decreases the number of deci-
sion variables and lowers the optimization pro-
cedure’s complexity.
To sum up, an attempt has been made to con-

Comprehensive model of operation process of complex technical system
designed for simulation purposes

303

struct a possibly comprehensive maintenance
model of a complex technical system and devel-
op an algorithm simulating the operation process
of thus modelled system. The author’s intention
was to encompass a wide range of maintenance
models to be found in the relevant literature, and
to provide a relatively simple tool for improving
the cost-effectiveness of system operation and
maintenance. This aim seems to have been (at
least in part) achieved, but there is still signifi-
cant work to do. The future research should more
broadly consider the issue of inter-component
dependence, i.e. define in more detail how the
aging rate of ei is influenced by the states of
components in Z(i). The above issue has been
studied in (Zhang & Horigome, 2001; Dukhovny
& Marichal, 2012; Yang et al., 2013; Nakamura
et al., 2017; Zhang & Wilson, 2017), from where
some ideas can be borrowed. Also, the algorithm
should take multiple failure modes into account.
Then, for a given component, its failure is self-
revealing or not depending on the mode of the
failure. Finally, the extended model should take
into consideration the influence of ambient con-
ditions (e.g. temperature, humidity, salinity etc.)
on the components’ aging rates.

References

Alabdulkarim, A.A., Ball, P.D. & Tiwari, A.
2013. Applications of simulation in mainte-
nance research. World Journal of Modelling
and Simulation 9, 14–37.

Barlow, R.E. & Proschan, F. 1975. Statistical
Theory of Reliability and Life Testing: Proba-
bility Models. Holt, Rinehart and Winston,
New York.

Chouhan, R., Gaur, M. & Tripathi, R. 2013. A
survey of preventive maintenance planning
models, techniques and policies for an ageing
and deteriorating production systems. HCTL
Open International Journal of Technology In-
novations and Research 3, 89–107.

Dietrich, T., Krug, S. & Zimmermann, A. 2017.
A discrete event simulation and evaluation
framework for multi UAV system maintenance
processes. 2017 IEEE International Systems
Engineering Symposium (ISSE), 1–6.

Dukhovny, A. & Marichal, J.–L. 2012. Reliabil-
ity of systems with dependent components
based on lattice polynomial description. Sto-
chastic Models 28, 167–184.

George–Williams, H. & Patelli, E. 2015. Monte-
Carlo based reliability/availability analysis al-
gorithm for efficient maintenance planning.
Transactions, 23rd Conference on Structural
Mechanics in Reactor Technology, Manchester,
UK.

Jardine, A.K.S. & Tsang, A.H.C. 2013.
Maintenance, Replacement, and Reliability.
CRC Press, Taylor & Francis Group.

Lu, Z., Liu J., Dong. L & Liang, X. 2019.
Maintenance process simulation based main-
tainability evaluation by using stochastic col-
ored petri net. Applied Sciences 9(16), 3262.

Lyubchenko, A.A., Kopytov E.Y., Bogdanov
A.A. & Maystrenko V.A. 2020. Discrete-event
simulation of operation and maintenance of tel-
ecommunication equipment using AnyLogic-
based multi-state models. Journal of Physics:
Conference Series 1441, 012046.

Münsterberg, T. 2017. Simulation-based Evalua-
tion of Operation and Maintenance Logistics
Concepts for Offshore Wind Power Plants. In-
novations for Maritime Logistics Volume 2.
Fraunhofer Verlag.

Nakagawa, T. 2008. Advanced Reliability Mod-
els and Maintenance Policies. Springer Series
in Reliability Engineering, Springer, London.

Nakagawa, T. 2014. Random Maintenance Poli-
cies. Springer Series in Reliability Engineer-
ing. Springer, London.

Nakamura, S. & Qian, C.H. & Nakagawa, T.
(Eds.). 2017. Reliability Modeling with Com-
puter and Maintenance Applications. World
Scientific, Singapore.

O’Connor, P. & Kleyner, A. 2011. Practical Re-
liability Engineering. John Wiley & Sons.

Panteleev, V.V., Kamaev, V.A. & Kizim, A.V.
2014. Developing a model of equipment
maintenance and repair process at service re-
pair company using agent-based approach.
Procedia Technology 16, 1072–1079.

Riane F., Roux O., Basile O. & Dehombreux P.
2009. Simulation based approaches for
maintenance strategies optimization. Hand-
book of Maintenance Management and Engi-
neering, 133–153.

Rubinstein, R.Y. & Kroese, D.P. 2008. Simula-
tion and the Monte Carlo Method, 2nd edition.
John Wiley & Sons.

Soltanali, H., Rohani, A., Tabasizadeh, M., Ab-
baspour-Fard, M.H. & Parida, A. 2019. Opera-
tional reliability evaluation-based maintenance

Malinowski Jacek

304

planning for automotive production line. Quali-
ty Technology & Quantitative Management
17(2), 186–202.

Sarkar, A., Panja, S.C. & Sarkar, B. 2011. Sur-
vey of maintenance policies for the last 50
years. International Journal of Software Engi-
neering & Applications 2(3), 130–148.

Vishnu, C.R. & Regikumar, V. 2016. Reliability
based maintenance strategy selection in process
plants: a case study. Procedia Technology 25,
1080–1087.

Wang, H. 2002. A survey of maintenance poli-
cies of deteriorating systems. European Jour-
nal of Operations Research 139(3), 469–489.

Yang, Q., Zhang, N. & Hong, Y. 2013. Reliabil-
ity analysis of repairable systems with depend-
ent component failures under partially perfect
repair. IEEE Transactions on Reliability 62(2),
490–498.

Zhang, T. & Horigome, M. 2001. Availability
and reliability of system with dependent com-
ponents and time-varying failure and repair
rates. IEEE Transactions on Reliability 50(2),
151–158.

Zhang, X. & Wilson, A. 2017. System reliability
and component importance under dependence:
a copula approach. Technometrics 59(2),
215–224.

