PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Effect of dual beam laser welding on microstructure–property relationships of hot-rolled complex phase steel sheets

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The work addresses microstructure–property relationships of hot-rolled complex phase steel sheets subjected to various conditions of dual beam laser welding. The article also contains a comparison between single-spot and twin-spot laser welding. Test-related joints were made using a Yb:YAG disc laser having a maximum power of 12 kW and a welding head enabling the focusing of a laser beam on two spots. The tests involved investigating the effect of power distribution on the macrostructure, microstructure and mechanical properties of joints. Microscopic investigations revealed the stabilisation of some fraction of retained austenite in the intercritical heat affected zone (ICHAZ) of joints. The application of the second beam resulted in tempering-like effects in the martensite of the fusion zone and in the HAZ, favourably reducing the hardness of the joint. The use of bifocal welding enabled the obtainment of a 10% hardness reduction in the fusion zone as against single-spot laser beam welding.
Rocznik
Strony
145--153
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Street, 44-100 Gliwice, Poland
  • Institute of Welding, 16-18 Bl. Czesława Street, 44-100 Gliwice, Poland
autor
  • Silesian University of Technology, Institute of Engineering Materials and Biomaterials, 18a Konarskiego Street, 44-100 Gliwice, Poland
autor
  • Institute of Welding, 16-18 Bl. Czesława Street, 44-100 Gliwice, Poland
Bibliografia
  • [1] W. Bleck, K. Phiu-On, Microalloying of cold-formable multi-phase steel grades, Materials Science Forum 500–501 (2005) 97–112.
  • [2] D. Krizan, K. Spiradek-Hahn, A. Pichler, Relationship between microstructure and mechanical properties in Nb–V microalloyed TRIP steel, Materials Science and Technology 31 (2015) 661–668.
  • [3] K. Radwanski, A. Wrozyna, R. Kuziak, Role of the advanced microstructures characterization in modeling of mechanical properties of AHSS steels, Materials Science and Engineering A 639 (2015) 567–574.
  • [4] R.A. Mesquita, R. Schneider, K. Steineder, L. Samek, E. Arenholz, On the austenite stability of a new quality of twinning induced plasticity steel. Exploring new ranges of Mn and C, Metallurgical and Materials Transactions A 44A (2013) 4015–4019.
  • [5] A. Grajcar, S. Lesz, Influence of Nb microaddition on a microstructure of low-alloyed steels with increased manganese content, Materials Science Forum 706–709 (2012) 2124–2129.
  • [6] K. Radwanski, Structural characterization of low-carbon multiphase steels merging advanced research methods with light optical microscopy, Archives of Civil and Mechanical Engineering 16 (2016) 282–293.
  • [7] Z. Gronostajski, A. Niechajowicz, S. Polak, Prospects for the use of new-generation steels of the AHSS type for collision energy absorbing components, Archives of Metallurgy and Materials 55 (2010) 221–230.
  • [8] D. Kuc, E. Hadasik, G. Niewielski, I. Schindler, E. Mazancova, S. Rusz, P. Kawulok, Structural and mechanical properties of laboratory rolled steels high-alloyed with manganese andaluminium, Archives of Civil and Mechanical Engineering 12 (2012) 312–317.
  • [9] M. Jablonska, G. Niewielski, R. Kawalla, High manganese TWIP steel – technological plasticity and selected properties, Solid State Phenomena 212 (2014) 87–90.
  • [10] J. Gorka, Weldability of thermomechanically treated steels having a high yield point, Archives of Metallurgy and Materials 60 (1) (2015) 469–475.
  • [11] B. Bartczak, D. Gierczycka-Zbrożek, Z. Gronostajski, S. Polak, A. Tobota, The use of thin-walled sections for energy absorbing components: a review, Archives of Civil and Mechanical Engineering 10 (4) (2010) 5–19.
  • [12] M. Amirthalingam, M.J.M. Hermans, I.M. Richardson, Microstructural evolution during gas tungsten arc, laser and resistance spot welding of Al-containing transformation induced plasticity (TRIP) steel, Advanced Materials Research 89–91 (2010) 23–28.
  • [13] A. Lisiecki, Welding of thermomechanically rolled fine-grain steel by different types of lasers, Archives of Metallurgy and Materials 59 (2014) 1625–1631.
  • [14] D. Janicki, Disc laser welding of armor steel, Archives of Metallurgy and Materials 59 (4) (2014) 1641–1646.
  • [15] M.S. Weglowski, S. Stano, G. Michta, W. Osuch, Structural characterization of Nd:YAG laser welded joint of dual phase steel, Archives of Metallurgy and Materials 55 (2010) 211–220.
  • [16] M. Pietrzyk, J. Kusiak, R. Kuziak, L. Madej, D. Szeliga, R. Golob, Conventional and multiscale modeling of microstructure evolution during laminar cooling of DP steel strips, Metallurgical and Materials Transactions A 45A (2014) 5835– 5851.
  • [17] S. Wiewiorowska, Determination of content of retained austenite in steels with TRIP effect deformed at different strain rates, Steel Research International 81 (2010) 262–265.
  • [18] C.H. Kim, J.K. Choi, M.J. Kang, Y.D. Park, A study on the CO2 laser welding characteristics of high strength steel up to 1500 MPa for automotive application, Journal of Achievements in Materials and Manufacturing Engineering 39 (2010) 79–86.
  • [19] E. Biro, J.R. McDermid, J.D. Embury, Y. Zhou, Softening kinetics in the subcritical heat-affected zone of dual-phase steel welds, Metallurgical and Materials Transactions A 41A (2010) 2348–2356.
  • [20] A. Grajcar, M. Rozanski, S. Stano, A. Kowalski, B. Grzegorczyk, Effect of heat input on microstructure and hardness distribution of laser welded Si–Al TRIP-type steel, Advances in Materials Science and Engineering 2014 (2014), http://dx. doi.org/10.1155/2014/658947, 8 pp.
  • [21] A. Grajcar, M. Rozanski, S. Stano, A. Kowalski, Microstructure characterization of laser-welded Nb-microalloyed silicon- aluminum TRIP steel, Journal of Materials Engineering and Performance 23 (2014) 3400–3406.
  • [22] A. Grajcar, M. Różański, M. Kamińska, B. Grzegorczyk, Study on non-metallic inclusions in laser-welded TRIP-aided Nb-microalloyed steel, Archives of Metallurgy and Materials 59 (3) (2014) 1163–1169.
  • [23] T.J. Park, J.W. Yu, J.I. Kang, T.K. Han, K.K. Chin, C.Y. Kang, Effect of B contents on hardness characteristics of disc laser beam welded CP steels, Journal of Korean Welding Society 29 (1) (2011) 107–114.
  • [24] J.P. Kong, T.K. Han, K.G. Chin, B.G. Park, C.Y. Kang, Effect of boron content and welding current on the mechanical properties of electrical resistance spot welds in complex-phase steels, Materials and Design 54 (2014) 598–609.
  • [25] M. Opiela, Thermodynamic analysis of the precipitation of carbonitrides in microalloyed steels, Materiali in Tehnologije 49 (3) (2015) 395–401.
  • [26] L. Cretteur, A.I. Koruk, L. Tosal-Martinez, Improvement of weldability of TRIP steels by use of in-situ pre- and post-heat treatments, Steel Research 73 (2002) 314–319.
  • [27] D. Siodłak, U. Lotter, R. Kawalla, V. Schwich, Modelling of the mechanical properties of low alloyed multiphase steels with retained austenite taking into account strain-induced transformation, Steel Research International 79 (2008) 776– 783.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d46037c4-f8a2-4710-86d5-f76fe40759cc
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.