PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Riverbank Filtration – A Potential Water Source Exploitation for the Red River Delta Region

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Riverbank filtration technology has been widely applied worldwide because of its high-capacity collection and good water quality throughout natural purification processes. Infiltration water can be extracted from Holocene (qh) layer or the Pleistocene deep layer (qp), replenished with water from the river through hydrogeological windows. Hydrodynamic and isotopic signatures were employed to determine water seepage capacity. The results show that infiltrated water is found in the sand layers along the rivers. However, the seepage rate shows a heterogeneously spatial variation ranging from 30 m3 /d in the Dinh Dao river to 33,600 m3 /d. Km along the shoreline in the Red River (RRD). Also, the exploitation capacity of seepage water differs widely in order of large (> 3,000 m3 /d), medium (1,000-3,000 m3 /d), small (500-1,000 m3 /d), and very small capacity (200-500 m3 /d). This study indicated that RRD could apply riverbank filtration techniques to overcome freshwater scarcity in the delta due to increasing surface pollution and discharge reduction.
Rocznik
Tom
Strony
53--64
Opis fizyczny
Bibliogr. 26 poz., rys., tab.
Twórcy
  • Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
autor
  • Thuyloi University, 175 Tay Son, Dong Da, Hanoi, Vietnam
  • 2 Institute of Water Resources Science, 8 Phao Dai Lang, Dong Da, Hanoi, Vietnam
  • Division of Northern Water Resources Planning and Investigation, Hanoi, Vietnam
Bibliografia
  • 1. Doussan, C., Ledoux, E. and Detay, M., 1998. River- groundwater exchanges, bank filtration, and groundwater quality: Ammonium Behavior, Journal of Environmental Quality, 27(6), 1418-1427, https://doi.org/10.2134/jeq1998.00472425002700060019x.
  • 2. Tufenkji, N., Ryan, J. N. and Elimelech, M., 2002. The promise of bank filtration, Environmental Science and Technology, 36(21): 422A-428A, https://doi.org/10.1021/es022441j.
  • 3. Hiscock, K.M. and Grischek, T., 2002. Attenuation of groundwater pollution by bank filtration, Journal of Hydrology, 266(3-4): 139–144,https://doi.org/10.1016/S0022-1694(02)00158-0.
  • 4. Matusiak, M., et al., 2021. Surface water and groundwater interaction at long-term exploited riverbank filtration site based on groundwater flow modelling (Mosina-Krajkowo, Poland), Journal of Hydrology: Regional Studies. 37: 100882, https://doi.org/10.1016/j.ejrh.2021.100882.
  • 5. Covatti, G. and T. Grischek, 2021. Sources and behavior of ammonium during riverbank filtration, Water Research, 191: 116788, https://doi.org/10.1016/j.watres.2020.116788.
  • 6. Lee, W., et al., 2020. Spatiotemporal evolution of iron and sulfate concentrations during riverbank filtration: Field observations and reactive transport modeling, Journal of Contaminant Hydrology, 234: 103697, https://doi.org/10.1016/j.jconhyd.2020.103697.
  • 7. Kondor, A.C., et al., 2020. Occurrence of pharmaceuticals in the Danube and drinking water wells: Efficiency of river bank filtration, Environmental Pollution, 265: 114893, https://doi.org/10.1016/j.envpol.2020.114893.
  • 8. Ray, C., Grischek, T., Schubert, J., Wang, J.Z. and Speth, T.F., 2002. A perspective of riverbank filtration, Journal of American Water Works Association (AWWA), 94(4): 149-160, https://doi.org/10.1002/j.1551-8833.2002.tb09459.x.
  • 9. Kuehn, W. and Mueller, U., 2000. Riverbank filtration: an overview, Journal of American Water Works Association (AWWA), 92(12): 60-69.
  • 10. https://doi.org/10.1002/j.1551-8833.2000.tb09071.x.
  • 11. Schubert, J., 2002. Hydraulic aspects of river bank filtration - field studies. Journal of Hydrology, 266: 145 - 161, https://doi.org/10.1016/S0022-1694(02)00159-2.
  • 12. Sandhu, C., Grischek, T., Kumar, P. and Ray, C., 2010. Potential for riverbank filtration in India, Clean Techn Environ Policy, pp. 1-22 (DOI 10.1007/s10098-010-0298-0).
  • 13. Ray, C., 2008. Worldwide potential of riverbank filtration, Clean Technologies and Environmental Policy, 10: 223-225, DOI: 10.1007/s10098-008-0164-5.
  • 14. Lan, N.M., 2014. Research on the relationship between river water and ground water, proposal of method system for determining exploitation reserve of groundwater in coastal Red River from Son Tay commune to Hung Yen, Archives of Department of Water Resources Management, Hanoi.
  • 15. Dan, N.V., 2010 Ground water resource in Hanoi city region and orientation for research, investigation, exploitation for use, Proceedings of International Science Conference on 1,000th Anniversary of Thang Long, 1007–1016.
  • 16. Quyen, P.B., 2015. Report on investigation and assessment of water resources in the Hanoi Capital region, Archives of Department of Water Resources Management, Hanoi.
  • 17. Minh, T., 1993. Report on ground water exploration in the Greater Hanoi. Archives of Geology, Hanoi.
  • 18. General Department of Geology and Minerals of Vietnam., 1979. Report on groundwater exploitation in Bai Bang area, Lam Thao, Phu Tho province. Archives of Geology, Hanoi.
  • 19. Dan, N.V., 2012. Possibility of construction of groundwater exploitation well fields with large capacity provided to Hanoi Capital, Meteorology and Hydrology Journal, 620: 1–5.
  • 20. Ha, D.T., 2020. Report on research result of the project “Research on application and development of riverbank infiltration exploitation technology in Vietnam for living and production activities”. Scientific research project No. 60.GER–19, Ministry of Science and Technology).
  • 21. Pholkern, K., Srisuk, K., Grischek, T., Soares, M., Schäfer, S., Archwichai, L., Saraphirom, P., Pavelic, P., Wirojanagud, W., 2015. Riverbed clogging experiments at potential river bank filtration sites along the Ping River, Chiang Mai, Thailand. Environ. Earth Sci. 73: 7699–7709.
  • 22. Wang, Y., Zheng, C., Ma, R., 2018. Review: Safe and sustainable groundwater supply in China, Hydrogeol. J., 26: 1301–1324, https://doi.org/10.1007/s10040-018-1795-1.
  • 23. Wassenaar, L.I., Ahmad, M., Aggarwal, P., Van Duren, M., Pöltenstein, L., Araguas, L., & Kurttas, T., 2012. Worldwide proficiency test for routine analysis of δ2H and δ18O in water by isotope‐ratio mass spectrometry and laser absorption spectroscop, Rapid Commun Mass Spectrom, 26(15):1641‐1648. https://doi.org/10.1002/rcm.6270.
  • 24. Dan, N.V., Thanh, T.N., 2000. The characteristics of the formation of groundwater dynamics in the QII-III aquifer of the Northern Delta region and the significance of water supply, Geology Journal, Hanoi.
  • 25. Dan, N.V, Thanh, T.N. and Huy. T.D, 2002. On the possibility of building absorbent works along the Red River, Geological Journal No. 44 Series A.
  • 26. Dan, N.V., Thanh, T.N, 2000. The characteristics of the formation of groundwater dynamics in the QII-III aquifer of the Northern Delta region and the significance of water supply, Geology Journal, Hanoi.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d45fb126-7bc6-4843-9992-b1fd5c6a6357
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.