PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wyznaczanie współczynników dyfuzji chlorków w materiałach cementowych – Przegląd metod eksperymentalnych i modelowania: Część I – Metody dyfuzyjne

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Determination of Chloride Diffusion Coefficient in Cement-Based Materials – A Review of Experimental and Modeling Methods: Part I – Diffusion Methods
Języki publikacji
PL EN
Abstrakty
PL
Korozja stalowych elementów zbrojenia w betonowych konstrukcjach jest poważnym problemem dotyczącym trwałości i bezpieczeństwa. Jednym z najbardziej agresywnych chemicznych składników powodujących taką korozję są jony chlorkowe działające poprzez ogólny mechanizm depasywacji powierzchni zbrojenia. Jony chlorkowe mogą dyfundować w roztworze w porach betonu docierając do zbrojenia, tak więc możliwość oszacowania współczynnika dyfuzji chlorków w betonie jest niezwykle ważna. Przedstawiona praca rozpoczyna serię trzech publikacji, których celem jest przegląd metod doświadczalnych wyznaczania współczynników dyfuzji jonów chlorkowych i teoretycznych modeli opisujących procesy transportu tych jonów w betonie. W szczególności, część 1 serii zawiera ogólne wprowadzenie do tematyki i omawia bardziej szczegółowo metody dyfuzyjne, część 2 koncentruje się przede wszystkim na metodach elektro-migracyjnych, a część 3 opisuje metody oparte na impedancji elektrochemicznej, które nie są obecnie tak powszechnie wykorzystywane do wyznaczania współczynników dyfuzji chlorków, jak wspomniane już dwie pozostałe grupy.
EN
The corrosion of steel reinfordcement (rebars) in concrete structures is a severe durability and safety problem. One of the most aggressive chemical species which induces such corrosion are the chloride ions via the general mechanism of depassivation of the rebar surface. Chloride ions can diffuse through the solution of pore system in concrete to reach the rebar, thus the assessment of the diffusion coefficient of chloride in concrete is of paramount importance. This paper starts a series of three papers which are meant to provide an overview of experimental methods and theoretical models of chloride diffusion in cement based materials. Specifically, Part 1 includes general introduction to the subject and covers pure diffusion methods, Part 2 deals with electro-migration methods, and finally Part 3 describes methods based on the electrochemical impedance which are not so common for chloride diffusion coefficient determination as the previous two groups.
Czasopismo
Rocznik
Strony
52--67
Opis fizyczny
Bibliogr. 70 poz., il.
Twórcy
  • Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza, Kraków
  • Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza, Kraków
  • Instytut Badawczy Dróg i Mostów, Warszawa
autor
  • Wydział Inżynierii Materiałowej i Ceramiki, Akademia Górniczo-Hutnicza, Kraków
Bibliografia
  • 1. A. Guettala, A. Abibsi, Corrosion degradation and repair of a concrete bridge, Mater. Struct., 39, 471–478 (2006).
  • 2. M. Andrade, M. Castellote, C. Alonso, C. Gonzáles, Non-steady-state chloride diffusion coefficients obtained from migration and natural diffusion tests. Part 1: Comparison between several methods of calculation, Mater. Struct., 33, 21–28 (2000).
  • 3. J.J. Beaudoin, R.F. Feldman, P.J. Tumidajski, Pore structure of hardened portland cement pastes and its influence on properties, Adv. Cem. Bas. Mater., 1, 224−236 (1994).
  • 4. C. Andrade, Calculation of Chloride Diffusion Coefficients in Concrete Form Ionic Migration Measurements. Cement and Concrete Research, 23, 3, 724–743 (1993).
  • 5. L. Tang, Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations, Cem. Concr. Res., 29, 1463−1468 (1999).
  • 6. A. Atkinson, A.K. Nickerson, The diffusion of ions through water-saturated cement, J. Mater. Sci., 19, 3068−3078 (1984).
  • 7. P. Spiesz, H.J.H. Brouwers, The apparent and effective chloride migration coefficients obtained in migration tests, Cem. Concr. Res., 48, 116–127 (2013).
  • 8. J. Newman, K.E. Thomas-Alea, “Electrochemical Systems”, 3rd ed. Wiley Interscience, 2004.
  • 9. J.A. Currie, Gaseous diffusion in porous media. Part 2 − Dry granular materials, Brit. J. Appl. Phys., 11, 318−324 (1960).
  • 10. E.E. Petersen, Diffusion in a Pore of Varying Cross Section, AIChE Journal, 4, 343−345 (1958).
  • 11. A.S. Michaels, Diffusion in a Pore of Irregular Cross Section − a Simplified Treatment, AIChE Journal, 5, 270−271 (1959).
  • 12. U.A. Birnin-Yauri, F.P. Glasser, Friedel’s salt, Ca2Al(OH)6(Cl,OH)x2H2O: its solutions and their role in chloride binding, Cem. Concr. Res., 28, 173−1723 (1998).
  • 13. P. Spiesz, M.M. Ballari, H.J.H. Brouwers, RCM: A new model accounting for the non-linear binding isotherm and the non-equilibrium conditions between the free- and bound-chloride concentrations, Constr. Build. Mater., 27, 293–304 (2012).
  • 14. C. D. Shackelford, D.E. Daniel, Diffusion in Saturated Soil. I: Background, J. Geotech. Eng. ASCE, 117, 467–484 (1991).
  • 15. W. Kurdowski, Chemia betonu – wybrane zagadnienia, izolacje.com.pl, Izolacje 03/2010, http://www.izolacje.com.pl/artykul/id1054, chemia-betonu-wybrane-zagadnienia.
  • 16. M.R. Jones et al., Studies using 27Al MAS NMR of AFm and AFt phases and the formation of Friedel’s salt, Cem. Concr. Res., 33, 177–82 (2003).
  • 17. P. Sandberg, Studies of chloride binding in concrete exposed in marine environment, Cem. Concr. Res., 29, 473–477 (1999).
  • 18. L. Tang, L.O. Nilsson, Chloride Binding Capacity and Binding Isotherms of OPC Pastes and Mortars, Cem. Concr. Res., 23, 247–253 (1993).
  • 19. M. Castellote, M. C. Andrade, C. Alonso, Measurement of the steady and non-steady-state chloride diffusion coefficients in a migration test by means of monitoring the conductivity in the anolyte chamber. Comparison with natural diffusion tests, Cem. Concr. Res., 31, 1411–1420 (2001).
  • 20. R.A. Patel, Q. Tri Phung, S.C. Seetharama, J. Perko, D. Jacques, N. Maes, G. De Schutter, G. Ye, K. Van Breugel, Diffusivity of saturated ordinary Portland cement-based materials: A critical review of experimental and analytical modelling approaches, Cem. Concr. Res., 90, 52−72 (2016).
  • 21. E.J. Garboczi, D.P. Bentz, Computer simulation of the diffusivity of cement-based materials, J. Mater. Sci., 27, 2083−2092 (1992).
  • 22. P. Halamickova, R.J. Detwiler, Water permeability and chloride ion diffusion in Portland cement mortars: Relationship to sand content and critical pore diameter, Cem. Concr. Res., 25, 790−802 (1995).
  • 23. D. A. Hausmann, Steel corrosion in concrete: how does it occur? Mater. Protection, 6, 19–23 (1967).
  • 24. V. K. Gouda, Corrosion and corrosion inhibition of reinforcing steel I. Immersed in alkaline solutions. Brit. Corros. J., 5, 198–203 (1970).
  • 25. U. Angst, B. Elsener, C.K. Larsen, Ø. Vennesland, Critical chloride content in reinforced concrete − A review, Cem. Concr. Res., 39, 1122–1138 (2009).
  • 26. K. Tuutti, Corrosion of steel in concrete, Report., CBI Forskning/Research, Swedish Cement and Concrete Research Institute, Stockholm, 1982.
  • 27. J. Liu, K. Tang, D. Pan, Z. Lei, W. Wang, F. Xing , Surface Chloride Concentration of Concrete under Shallow Immersion Conditions, Materials, 7, 6620−6631 (2014).
  • 28. P.F. McGrath, R.D. Hooton, Re-evaluation of the AASHTO T259 90-day salt ponding test, Cem. Concr. Res., 29, 1239–1248 (1999).
  • 29. Z. Li, J. Peng, B. Ma, Investigation of chloride diffusion for high-performance concrete containing fly ash, microsilica and chemical admixtures, ACI Mater. J., 96, 391-396 (1999).
  • 30. E.P. Nielsen, M.R. Geiker, Chloride diffusion in partially saturated cementitious material. Cem. Concr. Res., 33, 133–138 (2003).
  • 31. R. Loser, B. Lothenbach, A. Leemann, M. Tuchschmid, Chloride resistance of concrete and its binding capacity − comparison between experimental results and thermodynamic modeling. Cem Concr Composites, 32, 34-42 (2010).
  • 32. D. Whiting, Rapid determination of the chloride permeability of concrete, Federal Highway Administration. Report no.FHWA/RD-81/119, (1981) https://archive.org/details/rapiddeterminati00whit.
  • 33.C. Andrade, M.A. Sanjuan, A. Recuero, O. Rio, Calculation of chloride diffusivity in concrete from migration experiments, in non-steady-state conditions, Cem. Concr. Res., 24, 7, 1214–1228 (1994).
  • 34. C.L. Page, N.R. Short, A. El Tarras, Diffusion of chloride ions in hardened cement pastes, Cem. Concr. Res., 11, 395-406 (1981).
  • 35. R.K. Dhir, E.A. Byars, PFA concrete: chloride diffusion rates, Mag. Concr. Res., 45, 165, 1-9 (1993).
  • 36. K.A. MacDonald, D.O. Northwood, Experimental measurements of chloride ion diffusion rates using a two-compartment diffusion cell: Effects of material and test variables, Cem. Concr. Res., 25, 1407-1416 (1995).
  • 37. M. Castellote, C. Andrade, Round-Robin test on methods for determining chloride transport parameters in concrete, Materials and Structures, 99, 955−990 (2006).
  • 38. M. Roy Della, W. Jiang, M. R. Silsbee, Chloride diffusion in ordinary, blended, and alkali-activated cement pastes and its relation to other properties. Cem. Concr. Res., 30, 1879–1884 (2000).
  • 39. L. Tang, L.O. Nilsson, Rapid determination of the chloride diffusivity in concrete by applying an electrical field, ACI Materials Journal, 89, 1, 49–53 (1992).
  • 40. J. Crank, Mathematics of Diffusion, Oxford University Press, 1970.
  • 41. M.E. Glicksman, Diffusion in Solids: Field Theory, Solid-State Principles and Applications, John Wiley and Sons, 2000.
  • 42. J.S. Kirkaldy, D.J. Young; Diffusion in the Condensed State, The Institute of Metals, London, 1985.
  • 43. M. Castellote, C. Andrade, C. Alonso, Chloride-binding isotherms in concrete submitted to non-steady-state migration experiments, Cem. Concr. Res., 29, 1799–1806 (1999).
  • 44. A. Xu, S. Chandra, Assessment of chloride diffusion coefficient test methods, Corrossion of Cement Paste. Proceedings of the International Colloquium held at Mogilany. Ed. W. Kurdowski, 75-83, Kraków 1997.
  • 45. Z. Ściślewski, Protection of reinforced concrete structures. in Polish., Arkady, Warszawa, 1999.
  • 46. CHLORTEST. Resistance of concrete to chloride ingress – from laboratory tests to infield performance. EU-Project (5th FP GROWTH) G6RD-CT-2002-00855, WP2, report: pre-evaluation of different test methods, 2005.
  • 47. J. Lizarazo-Marriaga, P. Claisse, Effect of the non-linear membrane potential on the migration of ionic species in concrete, Electrochimica Acta, 54, 2761−2769 (2009).
  • 48. M. Torres-Luque, E. Bastidas-Arteaga, F. Schoefs, M. Sánchez-Silva, J.F. Osma, Non-destructive methods for measuring chloride ingress into concrete: State-of-the-art and future challenges (review), Constr. Build. Mater., 68, 68–81 (2014).
  • 49. K.D. Stanish, R.D. Hooton, M.D.A. Thomas, Testing the chloride penetration resistance of concrete: a literature review. FHWA contract DTFH61-97-R-00022. Prediction of chloride penetration in concrete, 1997.
  • 50. M. Shi, Z, Chen, J. Sun, Determination of chloride diffusivity in concrete by AC impedance spectroscopy, Cem. Concr. Res., 29, 1111−1115 (1999).
  • 51. W. Kurdowski , Chemia cementu i betonu. Stowarzyszenie Producentów Cementu, Kraków 2010, Wydawnictwo Naukowe PWN, Warszawa 2010.
  • 52. C.L. Page, N.R. Short, A. El Tarras, Diffusion of chloride ions in hardened cement paste, Cem. Concr. Res., 23, 395−406 (1993).
  • 53. H. Friedmann, O. Amiri, A. Aït-Mokhtar, P. Dumargue, A direct method for determining chloride diffusion coefficient by using migration test, Cem. Concr. Res., 34, 1967–1973 (2004).
  • 54. K. Krabbenhøft, J. Krabbenhøft, Application of the Poisson–Nernst–Planck equations to the migration test, Cem. Concr. Res., 38, 77–88 (2008).
  • 55. AASHTO, Standard Method of Test for Resistance of Concrete to Chloride ion Penetration, AASHTO T, 259-80 (1997).
  • 56. NT BUILD-443, Concrete Hardened: Accelerated Chloride Penetration, Nordtest Method, Approved 1995-11.
  • 57. C.C. Yang, A comparison of transport properties for concrete using the ponding test and the accelerated chloride migration test, Mater. Struct., 38, 313-320 (2005).
  • 58. L. Tang, Electrically accelerated methods for determining chloride diffusivity in concrete – current development, Mag. Concr. Res., 48, 173-179 (1995).
  • 59. M.A. Climent, J.F. de Vera G, López, C. García, C. Andrade C. Transport of chlorides through non-saturated concrete after an initial limited chloride supply. In: Andrade C., Kropp J., editors. Proc of the 2nd int workshop on testing and modelling the chloride ingress into concrete. Cachan (France): RILEM Publications, 173–87 (2000).
  • 60. M.A. Climent, G. de Vera, J.F. López, E. Viqueira, C. Andrade, A test method for measuring chloride diffusion coefficients through non-saturated concrete. Part I: the instantaneous plane source diffusion case. Cem. Concr. Res., 32, 7, 1113–23 (2002).
  • 61. G. de Vera, M.A. Climent, J.F. López, E. Viqueira, C. Andrade, Transport and binding of chlorides through non-saturated concrete after an initial limited chloride supply. In: C. Andrade, J. Kropp, editors. Proc of the 3rd int workshop on testing and modeling the chloride ingress into concrete. Cachan (France): RILEM Publications, 205–18 (2004).
  • 62. G. de Vera, M.A. Climent, E. Viqueira, C. Antón, C. Andrade, A test method for measuring chloride diffusion coefficients through partially saturated concrete. Part II: the instantaneous plane source diffusion case with chloride binding consideration, Cem. Concr. Res., 37, 5, 714–24 (2007).
  • 63. A.T.C. Guimarães, P.R.L. Helene, The moisture effect on the diffusion of chloride ions in hydrated cement paste, Marine Corrosion in Tropical Environments, ASTM STP 139, S.W. Dean, G. Hernandez-Duque Delgadillo, and J.B. Bushman, Eds., Philadelphia, USA, 135–49 (2000).
  • 64. A.T.C. Guimarães, P.R.L. Helene, Chloride diffusion and the influence of the saturation degree of the concrete. In: C. Andrade, J. Kropp, editors. Proc of the 3rd int workshop on testing and modeling the chloride ingress into concrete. Cachan (France): RILEM Publications, 237–56 (2004).
  • 65. A.T.C. Guimarães, P.R.L. Helene, Diffusion of chloride ions in unsaturated concrete: Forecast of service life in a wet–dry environment. American Concrete Institute, SP 229-12, Farmington Hills, MI, USA, 175–93 (2005).
  • 66. A.T.C. Guimarães, P.R.L. Helene, Models of variation of chloride ion diffusion as a function of changes in the saturation degree of concrete mixes prepared with pozzolanic cement. In: Ferreira R.M., Gulikers J., Andrade C., editors. Proc of the int workshop on integral service life modelling of concrete structures. Cachan (France): RILEM Publications,63–70 (2007).
  • 67. A.T.C. Guimarães, M.A. Climent, G. de Vera, F.J. Vicente, F.T. Rodrigues, C. Andrade, Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure, Constr. Build. Mater., 25, 785–790 (2011).
  • 68. A.T.C. Guimarães, M.A. Climent, G. de Vera, F.J. Vicente, F.T. Rodrigues, C. Andrade; Construction and Building Materials, 25, 785–790 (2011).
  • 69. H.A. Daynes, The process of diffusion through a rubber membrane, Proceedings of the Royal Society of London, 286–307 (1920).
  • 70. Z. Wróblewski, On the Nature of Absorption of Gases, Nature 21, 190–192 (1879).
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d45c242e-434b-451c-ba51-446f579ca5a9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.