PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluation of the performance of designed coaxial antennas for hyperthermia using simulation and experimental methods

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Introduction: Antenna geometries and tissue properties affect microwave energy distributions during microwave ablation procedures. There is paucity information on the potential of antenna fabricated from a thick semi-rigid coaxial cable in the field of microwave thermal therapy. This study aimed at comparing the performance of two dual-slot antennas designed from different semi-rigid coaxial cables for the ablation of a liver tumour using numerical simulation and experimental validation methods. Materials and Methods: COMSOL Multiphysics software was used for designing dual-slot antennas and as well as to evaluate microwave energy deposition and heat distribution in the liver tissue. Experimental validations were conducted on the ex-vivo bovine livers to validate the simulation results. Results: Thick antenna developed in this study produced a higher sphericity index, larger ablation diameter and reduced backward heating along the antenna shaft than the existing one. The experimental validation results also indicate significant differences between the two antennas in terms of ablation diameters (p = 0.04), ablation lengths (p = 0.02) and aspect ratios (p = 0.02). Conclusion: Based on the findings in this study, antenna fabricated from a thick coaxial cable has a higher potential of localizing microwave energy in the liver than conventional antennas.
Rocznik
Strony
109--117
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
  • Department of Radiation Biology and Radiotherapy, College of Medicine, University of Lagos, Nigeria
  • Department of Radiation Biology and Radiotherapy, College of Medicine, University of Lagos, Nigeria
  • Department of Physics, University of Lagos, Nigeria
  • Department of Radiation Biology and Radiotherapy, College of Medicine, University of Lagos, Nigeria
  • Department of Biomedical Engineering, College of Medicine, University of Lagos, Nigeria
  • Department of Radiation Biology and Radiotherapy, College of Medicine, University of Lagos, Nigeria
Bibliografia
  • 1. Ahmed M, Brace CL, Lee FT Jr, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351-69. https://doi.org/10.1148/radiol.10081634
  • 2. Ryan TP, Brace CL. Interstitial microwave treatment for cancer: historical basis and current techniques in antenna design and performance. Int J Hyperthermia. 2017;33(1):3-14. https://doi.org/10.1080/02656736.2016.1214884
  • 3. Healey TT, March BT, Baird G, Dupuy DE. Microwave Ablation for Lung Neoplasms: A Retrospective Analysis of Long-Term Results. J Vasc Interv Radiol. 2017;28(2):206-211. https://doi.org/10.1016/j.jvir.2016.10.030
  • 4. Maciolek KA, Abel EJ, Best SL, et al. Percutaneous microwave ablation for local control of metastatic renal cell carcinoma. Abdom Radiol (NY). 2018;43(9):2446-2454. https://doi.org/10.1007/s00261-018-1498-z
  • 5. Izzo F, Granata V, Grassi R, et al. Radiofrequency Ablation and Microwave Ablation in Liver Tumors: An Update. The Oncologist. 2019;24(10):e990-e1005. https://doi.org/10.1634/theoncologist.2018-0337
  • 6. Meloni MF, Chiang J, Laeseke PF, et al. Microwave ablation in primary and secondary liver tumours: technical and clinical approaches. Int J Hyperthermia. 2017;33(1):15-24. https://doi.org/10.1080/02656736.2016.1209694
  • 7. Zhou W, Zha X, Liu X, et al. US-guided percutaneous microwave coagulation of small breast cancers: a clinical study. Radiology. 2012;263(2):364-73. https://doi.org/10.1148/radiol.12111901
  • 8. Ierardi AM, Biondetti P, Coppola A, et al. Percutaneous microwave thermosphere ablation of pancreatic tumours. Gland Surg. 2018;7(2):59-66. https://doi.org/10.21037/gs.2017.11.05
  • 9. Fan QY, Zhou Y, Zhang M, et al. Microwave ablation of malignant extremity bone tumors. Springerplus. 2016;5(1):1373. https://doi.org/10.1186/s40064-016-3005-8
  • 10. Simon CJ, Dupuy DE, Mayo-Smith WW. Microwave ablation: principles and applications. Radiographics. 2005;25:S69-83. https://doi.org/10.1148/rg.25si055501
  • 11. Bertram JM, Yang D, Converse MC, et al. Antenna design for microwave hepatic ablation using an axisymmetric electromagnetic model. Biomed Eng Online. 2006;9:1-9. https://doi.org/10.1186/1475-925X-5-15
  • 12. Yang D, Bertram JM, Converse MC, et al. A floating sleeve antenna yields localized hepatic microwave ablation. IEEE Trans Biomed Eng. 2006;53(3):533-7. https://doi.org/10.1109/TBME.2005.869794
  • 13. Luyen H, Hagness SC, Behdad N. A balun-free helical antenna for minimally invasive microwave ablation. IEEE Trans Antennas Propag. 2015;63:533-65. https://doi.org/10.1109/TAP.2015.2389223
  • 14. Brace CL. Dual-slot antennas for microwave tissue heating : Parametric design analysis and experimental validation. Med Phys. 2011;38(7):4232-4240. https://doi.org/10.1118/1.3601019
  • 15. Bertram JM, Yang D, Converse MC, et al. A review of coaxial-based interstitial antennas for hepatic microwave ablation. Crit Rev Biomed Eng. 2006;34:187-213. https://doi.org/10.1615/critrevbiomedeng.v34.i3.10
  • 16. Ibitoye AZ, Orotoye T, Nwoye EO, Aweda MA. Analysis of efficiency of different antennas for microwave ablation using simulation and experimental methods Egypt J Basic Appl Sci. 2018;5:24–30. https://doi.org/10.1016/j.ejbas.2018.01.005
  • 17. Brace CL. Microwave Tissue Ablation: Biophysics, technology, and applications. Crit Rev Biomed Eng. 2010;38(1):65-78. https://doi.org/10.1615/critrevbiomedeng.v38.i1.60
  • 18. Lubner MG, Brace CL, Hinshaw JL, Lee Jr FT. Microwave tumor ablation: Mechanism of action, clinical results, and devices. J Vasc Interv Radiol. 2010;21:S192–S203. https://doi.org/10.1016/j.jvir.2010.04.007
  • 19. Prakash P. Theoretical modeling for hepatic microwave ablation. Open Biomed Eng J. 2010;4:27-38. https://doi.org/10.2174/1874120701004020027
  • 20. Fallahi H, Prakash P. Antenna Designs for Microwave Tissue Ablation. Crit Rev Biomed Eng. 2018;46(6):495-521. https://doi.org/10.1615/CritRevBiomedEng.2018028554
  • 21. Ibitoye AZ, Nwoye EO, Aweda MA, et al. Optimization of dual-slot antenna using floating metallic sleeve for microwave ablation. Med Eng Phys. 2015;37(4):384-91. https://doi.org/10.1016/j.medengphy.2015.01.015
  • 22. Hand JW. Modelling the interaction of electromagnetic fields (10 MHz–10 GHz) with the human body: methods and applications. Phys Med Biol. 2008;53(16):R243–R286. https://doi.org/10.1088/0031-9155/53/16/R01
  • 23. Deshazer G, Prakash P, Merck D, Haemmerich D. Experimental measurement of microwave ablation heating pattern and comparison to computer simulations. Int J Hyperthermia. 2017;33(1):74-82. https://doi.org/10.1080/02656736.2016.1206630
  • 24. Chiang J, Wang P, Brace CL. Computational modelling of microwave tumour ablations, Int J Hyperthermia. 2013;29(4):308-317. https://doi.org/10.3109/02656736.2013.799295
  • 25. Chiang J, Hynes K, Bedoya M, Brace CL. A dual-slot microwave antenna for more spherical ablation zones: Ex vivo and in vivo validation. Radiology. 2013;268(2):382–389. https://doi.org/10.1148/radiol.13122128
  • 26. COMSOL Multiphysics users’ guide. Electromagnetic module and heat transfer module, Version 4.4; www.comsol.com/models
  • 27. Hasgall PA, Di Gennaro F, Baumgartner C, et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues. Version 4.0, May 15, 2018. Accessed 05 June 2019. https://doi.org/10.13099/VIP21000-04-0
  • 28. Andreuccetti D, Fossi R, Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz - 100 GHz. IFAC-CNR, Florence (Italy), 1997. Based on data published by C. Gabriel et al. in 1996. [Online]. Available: http://niremf.ifac.cnr.it/tissprop
  • 29. Hines-Peralta AU, Pirani N, Clegg P, et al. Microwave Ablation: Results with a 2.45 GHz Applicator in vitro Bovine and in vivo Porcine Liver. Radiology. 2006;239(1):94-102. https://doi.org/10.1148/radiol.2383050262
  • 30. Ruiter SJS, Heerink WJ, de Jong KP. Liver microwave ablation: a systematic review of various FDA-approved systems. Eur Radiol. 2019;29(8):4026-4035. https://doi.org/10.1007/s00330-018-5842-z
  • 31. Zhou W, Liang M, Pan H, et al. Comparison of ablation zones among different tissues using 2450-MHz cooled-shaft microwave antenna: results in ex vivo porcine models. PloS One. 2013;8(8):e71873. https://doi.org/10.1371/journal.pone.0071873
  • 32. Kuang M, Lu MD, Xie XY, et al. Liver cancer: increased microwave delivery to ablation zone with cooled-shaft antennaexperimental and clinical studies. Radiology. 2007;242(3):914–924. https://doi.org/doi.10.1148/radiol.2423052028
  • 33. Ibitoye AZ, Nwoye EO, Aweda MA, et al. Microwave ablation of ex vivo bovine tissues using a dual-slot antenna with a floating metallic sleeve, Int J Hyperthermia. 2016;32(8): 923–930 https://doi.org/10.1080/02656736.2016.1211323
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d456fa29-2b72-41be-8607-0dc576ee15c9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.