PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Algebras of Definable and Rough Sets in Quasi Order-based Approximation Spaces

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A pair of approximation operators, based on the notion of granules in generalized approximation spaces, was studied in an earlier work by the authors. In this article, we investigate algebraic structures formed by the definable sets and also by the rough sets determined by this pair of approximation operators. The definable sets are open sets of an Alexandrov topological space, and form a completely distributive lattice in which the set of completely join irreducible elements is join dense. The collection of rough sets also forms a similar structure. Representation results for such classes of completely distributive lattices as well as Heyting algebras in terms of definable and rough sets are obtained. Further, two unary operators on rough sets are considered, making the latter constitute a structure that is named a ‘rough lattice’. Representation results for rough lattices are proved.
Wydawca
Rocznik
Strony
37--55
Opis fizyczny
Bibliogr. 21 poz., tab.
Twórcy
autor
  • Department of Mathematics and Statistics Indian Institute of Technology Kanpur, Kanpur, India
autor
  • Department of Mathematics and Statistics Indian Institute of Technology Kanpur, Kanpur, India
Bibliografia
  • [1] Banerjee, M., Chakraborty, M. K.: Rough sets through algebraic logic, Fundamenta Informaticae, 28(3-4), 1996, 211–221.
  • [2] Banerjee, M., Chakraborty, M. K.: Algebras from rough sets, in: Rough-neuro Computing: Techniques for Computing with Words (S. K. Pal, L. Polkowski, A. Skowron, Eds.), Springer-Verlag, Berlin, 2004, 157–184.
  • [3] Birkhoff, G.: Lattice Theory, ColloquiumPublications, Vol. XXV, 3rd edn., American Mathematical Society, Providence, 1995.
  • [4] Boicescu, V., Filipoiu, A., Georgescu, G., Rudeanu, S.: Łukasiewicz-Moisil Algebras, North-Holland, Amsterdam, 1991.
  • [5] Bonikowski, Z.: Algebraic structures of rough sets in representative approximation spaces, Electronic Notes in Theoretical Computer Science, 82, 2003, 1–12.
  • [6] Cignoli, R.: The algebras of Łukasiewicz many-valued logic: a historical overview, in: Algebraic and Prooftheoretic Aspects of Non-classical Logics, LNAI 4460 (S. Aguzzoli, A. Ciabattoni, B. Gerla, C. Manara, V. Marra, Eds.), Springer-Verlag, Berlin Heidelberg, 2007, 69–83.
  • [7] Davey, B. A., Priestley, H. A.: Introduction to Lattices and Order, Cambridge University Press, 2002.
  • [8] Degang, C., Wenxiu, Z., Yeung, D., Tsang, E.: Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Information Sciences, 176, 2006, 1829–1848.
  • [9] Greco, S., Matarazzo, B., Słowinski, R.: Rough sets theory for multi-criteria decision analysis, European Journal of Operation Research, 129, 2001, 1–47.
  • [10] Greco, S., Matarazzo, B., Słowinski, R.: Algebra and topology for dominance-based rough set approach, in: Advances in Intelligent Information Systems (Z. Ras, L.-S. Tsay, Eds.), Springer-Verlag, Berlin Heidelberg, 2010, 43–78.
  • [11] Järvinen, J., Radeleczki, S.: Representation of Nelson algebra by rough sets determined by quasiorder, Algebra Universalis, 66, 2011, 163–179.
  • [12] Järvinen, J., Radeleczki, S., Veres, L.: Rough sets determined by quasiorders, Order, 26, 2009, 337–355.
  • [13] Konikowska, B.: Three-valued logic for reasoning about covering-based rough sets, in: Rough Sets and Intelligent Systems (A. Skowron, Z. Suraj, Eds.), Springer-Verlag, Berlin Heidelberg, 2013, 439–461.
  • [14] Kumar, A., Banerjee, M.: Definable and rough sets in covering-based approximation spaces, in: Rough Sets and Knowledge Technology (T. Li, H. Nguyen, G.Wang, J. Grzymała-Busse, R. Janicki, A. Hassanien, H. Yu, Eds.), Springer-Verlag, Berlin Heidelberg, 2012, 488–495.
  • [15] Nagarajan, E. K. R., Umadevi, D.: A method of representing rough sets system determined by quasi orders, Order, 30, 2013, 313–337.
  • [16] Pawlak, Z.: Rough Sets: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, 1991.
  • [17] Rasiowa, H.: An Algebraic Approach to Non-classical Logics, North-Holland, 1974.
  • [18] Samanta, P., Chakraborty, M. K.: Generalized rough sets and implication lattices, Transactions on Rough Sets XIV, LNCS 6600, 2011, 183–201.
  • [19] Vakarelov, D.: Notes on N-lattices and constructive logic with strong negation, Studia Logica, 36, 1977, 109–125.
  • [20] Walker, E.: Stone algebras, conditional events, and three valued logic, IEEE Transactions on Systems, Man and Cybernetics, 24, 1994, 16991707.
  • [21] Zhoua, N., Hua, B.: Rough sets based on complete completely distributive lattice, Information Sciences, 269, 2014, 378–387.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d44b39de-b259-48c3-8606-d9bee4ac150f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.