PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Incompressible limit for a magnetostrictive energy functional

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The modern materials undergoing large elastic deformations and exhibiting strong magnetostrictive effect are modelled here by free energy functionals for nonlinear and non-local magnetoelastic behaviour. The aim of this work is to prove a new theorem which claims that a sequence of free energy functionals of slightly compressible magnetostrictive materials with a non-local elastic behaviour, converges to an energy functional of a nearly incompressible magnetostrictive material. This convergence is referred to as a Γ -convergence. The non-locality is limited to non-local elastic behaviour which is modelled by a term containing the second gradient of deformation in the energy functional.
Twórcy
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warszawa, Poland Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., 01-452 Warszawa, Poland
autor
  • Institute of Fundamental Technological Research, Polish Academy of Sciences, 5B Pawińskiego St., 02-106 Warszawa, Poland Institute of Geophysics, Polish Academy of Sciences, 64 Księcia Janusza St., 01-452 Warszawa, Poland
Bibliografia
  • [1] C. Rodriguez, M. Rodriguez, I. Orue, J.L. Vilas, J.M. Barandiarn, M.L.F. Gubieda, and L.M. Leon, “New elastomer Terfenol-D magnetostrictive composites”, Sensors and Actuators A: Physical 149, 251-254 (2009).
  • [2] D. Braes and P. Ming, “A finite element method for nearly incompressible elasticity problems”, Mathematics of Computations 74, 25-52 (2004).
  • [3] H. Ghaemi, K. Behdinan, and A. Spence, “On the development of compressible pseudo-strain energy density function for elastomers, Part I. Theory and experiment”, J. Materials Process Techn. 178, 307-316 (2006).
  • [4] P. Rybka and M. Luskin, “Existence of energy minimizers for magnetostrictive materials”, SIAM J. Math. Anal. 36, 2204-2019 (2005).
  • [5] W. Bielski and B. Gambin, “Relationship between existence of energy minimizers of incompressible and nearly incompressible magnetostrictive materials”, Reports Math. Phys. 66, 147-157 (2010).
  • [6] E. De Giorgi, “G-operators and -convergence”, Proc. Int. Congr. Math. 2, 1175-1191 (1984).
  • [7] E. De Giorgi and T. Franzoni, “Su un tipo di convergenza variazionale”, Rend. Accad. Naz. Lincei, Roma LV III, 842-850 (1975).
  • [8] H. Attouch, Convergence for Functions and Operators, Pitman, Boston, 1984.
  • [9] A. Braides, -convergence for Beginners, Oxford University Press, Oxford, 2002.
  • [10] G. Dal Maso, An Introduction to -convergence, Birkhauser, Boston, 1993.
  • [11] P. Charrier, B. Dacorogna, B. Hanouzet, and P. Laborde, “An existence theorem for slightly compressible materials in nonlinear elasticity”, SIAM J. Math. Anal. 19, 70-85 (1988).
  • [12] H. Le Dret, “Incompressible limit behaviour of slightly compressible nonlinear elastic materials”, Math. Mod. Num. Anal. 20, 315-340 (1986).
  • [13] R. Rostamian, “Internal constraints in boundary value problems of continuum mechanics”, Indiana Univ. Math. J. 27, 637-656 (1978).
  • [14] A. Giacomini and M. Ponsiglione, “Non-interpenetration of matter for SBV deformations of hyperelastic brittle materials”, Proc. Roy. Soc. Edinburgh Sect. A 138(5), 1019-1041 (2008).
  • [15] Ph. Ciarlet and J. Neˇcas, “Injectivity and self-contact in nonlinear elasticity”, Arch. Rat. Mech. Analysis 97, 171-188 (1987).
  • [16] J. Neˇcas, Les M´ethodes Directes en Th´eorie des Equations Elliptiques, Masson, Paris, 1997.
  • [17] R. Adams, Sobolev Spaces, Academic Press, New York, 1975.
  • [18] Ph. Ciarlet, Mathematical Elasticity, Volume I: Threedimensional Elasticity, Elsevier, Amsterdam, 1988.
  • [19] T. Roubiˇcek, Relaxation in Optimization Theory and Variational Calculus, Walter de Gruyter, Berlin, 1997.
  • [20] S. Doll and K. Schweizerhof, “On the development of volumetric strain energy functions”, J. Appl. Mech. 67, 17-21 (2000).
  • [21] L. Daniel, O. Hubert, and R. Billardon, “Homogenisation of magneto-elastic behaviour: from the grain to the macro scale”, Comput. Appl. Math. 23, 1-24 (2004).
  • [22] B. Gambin and J.J. Telega, “Effective properties of elastic solids with randomly distributed microcracks”, Mech. Res. Comm. 27, 697-706 (2000).
  • [23] G. Milton, The Theory of Composites, Cambridge University Press, Cambridge 2002.
  • [24] J.J. Telega and W. Bielski, “Flows in random porous media: effective models”, Computers and Geotechnics 30, 271-288 (2003).
  • [25] B. Gambin, “Stochastic homogenization”, Control and Cybern. 23 (4), 672-676 (1994).
  • [26] L.P. Liu, “Multiscale analysis and modeling of magnetostrictive composites”, Ph.D. Thesis, University of Minnesota, Minnesota, 2006.
  • [27] L.P. Liu, R.D. James, and P.H. Leo, “Magnetostrictive composites in the dilute limit”, J. Mechanics and Physics of Solids 54, 951-974 (2006).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d44a17e6-8334-4a7f-a9fc-81d463286de5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.