PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mechanical properties of Super 304H steel after long-term ageing at 650 and 700°C

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper shows the degradation process of the modern austenitic Super 304H (X10CrNiCuNb18-9-3) steel which was subjected to long-term aging for up to 50,000 h at 650 and 700°C. The investigations include microstructure examination (SEM), identification and analysis of the precipitation process, and mechanical properties tests. The Super 304H steel has a structure characteristic of austenitic steels with visible annealing twins and single primary NbX precipitates. Long-term aging in the steel leads to numerous precipitation processes of M23C6, MX carbides, σ phase, Z phase, and ε-Cu phase. Precipitation processes lead to a decrease in plastic properties and impact energy as well as alloy over aging. Yield strength and tensile strength values after 50,000 h of aging were similar to those as delivered. The yield and tensile strength value strongly depend on the applied aging temperature.
Rocznik
Strony
art. no. e144612
Opis fizyczny
Bibliogr. 43 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, K. Miarki 12-14, 44-100 Gliwice, Poland
autor
  • Department of Engineering Materials and Biomaterials, Silesian University of Technology, Konarskiego 18a, 44 100 Gliwice, Poland
  • Łukasiewicz Research Network – Upper Silesian Institute of Technology, K. Miarki 12-14, 44-100 Gliwice, Poland
  • Department of Materials Engineering, University of Zilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Bibliografia
  • [1] A. Mesjasz-Lech, “Planning of production resources use and environmental effects on the example of a thermal power plant,” Procedia-Soc. Behav. Sci., vol. 213, pp. 539–545, 2015, doi: 10.1016/j.sbspro.2015.11.447.
  • [2] X. Chen et al., “Emission characteristics of fine particulate matter from ultra-low emission power plants,” Environ. Pollut., vol. 255, p.113157, 2019, doi: 10.1016/j.envpol.2019.113157.
  • [3] M. Bartecka, P. Terlikowski, M. Kłos, and Ł. Michalski, “Sizing of prosumer hybrid renewable energy systems in Poland,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 4, pp. 721–731, 2020, doi: 10.24425/bpasts.2020.133125.
  • [4] G. Golański, A. Zielińska-Lipiec, A. Zieliński, and M. Sroka “Effect of long-term service on microstructure and mechanical properties of martensitic 9% Cr Steel,” J. Mater. Eng. Perform., vol. 26, pp. 1101–1107, 2017, doi: 10.1007/s11665-017-2556-3.
  • [5] A. Zieliński, G. Golański, and M. Sroka, “Comparing the methods in determining residual life on the basis of creep tests of low-alloy Cr-Mo-V cast steels operated beyond the design service life,” Int. J. Pressure Vessels Pip., vol. 152, pp. 1–6, 2017, doi: 10.1016/j.ijpvp.2017.03.002.
  • [6] G. Golański, A. Zieliński, and M. Sroka, “Microstructure and mechanical properties of TP347HFG austenitic stainless steel after long-term service,” Int. J. Pressure Vessels Pip., vol. 188 p. 104160, 2020, doi: 10.1016/j.ijpvp.2020.104160.
  • [7] H. Lu, F. Xu, H. Liu, J. Wang, D.E. Campbell, and H. Ren, “Emergy-based analysis of the energy security of China,” Energy, vol. 181, pp. 123–135, 2019, doi: 10.1016/j.energy.2019.05.170.
  • [8] A. Manowska, K. Tobór-Osadnik, and M. Wyganowska, “Economic and social aspects of restructuring Polish coal mining: Focusing on Poland and the EU,” Resour. Policy, vol. 52, pp. 192–200, 2017, doi: 10.1016/j.resourpol.2017.02.006.
  • [9] M. Sroka, A. Zieliński, and J. Mikuła, “The service life of the repair welded joint of Cr-Mo / Cr-Mo-V,” Arch. Metall. Mater., vol. 61, pp. 969–974, 2016, doi: 10.1515/amm-2016-0217.
  • [10] J. Kępa, G. Golański, A. Zieliński, and A. Brodziak-Hyska “Precipitation process in VM12 steel after ageing at 650°C temperature,” J. Vibroeng., vol. 14, pp. 143–150, 2012.
  • [11] D.H.D. Rocha and R.J. Silva, “Exergoenvironmental analysis of a ultra-supercritical coal-fired power plant,” J. Clean. Prod., vol. 231, pp. 671–682, 2019, doi: 10.1016/j.jclepro.2019.05.214.
  • [12] X. Guo et al., “Thermal and stress analyses of a novel coated steam dual pipe system for use in advanced ultra-supercritical power plant,” Int. J. Pressure Vessels Pip., vol. 176, p. 103933, 2019, doi: 10.1016/j.ijpvp.2019.103933.
  • [13] T. Dudziak et al., “Phase investigations under steam oxidation process at 800°C for 1000 h of advanced steels and Ni-based alloys”, Oxid. Met., vol. 87, pp. 139–158, 2017, doi: 10.1007/s11085-016-9662-8.
  • [14] V.D. Stevanovic, M.M. Petrovic, T.Wala, S. Milivojevic, M. Ilic, and S. Muszynski, “Efficiency and power upgrade at the aged lignite-fired power plant by flue gas waste heat utilization: high pressure versus low pressure economizer installation,” Energy, vol. 187, p. 115980, 2019, doi: 10.1016/j.energy.2019.115980.
  • [15] A. Jahangiri, M.M. Yahyaabadi, and A. Sharif, “Exergy and economic analysis of using the flue gas injection system of a combined cycle power plant into the Heller Tower to improve the power plant performance,” J. Clean. Prod., vol. 233, pp. 695–710, 2019, doi: 10.1016/j.jclepro.2019.06.077.
  • [16] C. Lin et al., “Integrated assessment of the environmental and economic effects of an ultra-clean flue gas treatment process in coal-fired power plant,” J. Clean. Prod., vol. 199, pp. 359–368, 2018, doi: 10.1016/j.jclepro.2018.07.174.
  • [17] A. Zieliński, M. Sroka, and T. Dudziak, “Microstructure and Mechanical Properties of Inconel 740H after Long-Term Service,” Materials, vol. 11, no. 11, p. 2130, 2018, doi: 10.3390/ma11112130.
  • [18] G. Golański, A. Merda, A. Zieliński, P. Urbańczyk, J. Słania and M. Kierat, “Microstructure and mechanical properties of HR6W alloy dedicated for manufacturing of pressure elements in supercritical and ultrasupercritical power units,” E3S Web Conf., vol. 82, p. 01005, 2019, doi: 10.1051/e3sconf/20198201005.
  • [19] A. Zieliński, J. Dobrzański, H. Purzyńska, R. Sikora, M. Dziuba-Kałuża, and Z. Kania, “Evaluation of Creep Strength of Heterogeneous Welded Joint in HR6W Alloy and Sanicro 25 Steel,” Arch. Metall. Mater., vol. 62, no. 4, pp. 2057–2064, 2017, doi: 10.1515/amm-2017-0305.
  • [20] M. Sroka, M. Nabiałek, M. Szota, and A. Zieliński, “The influence of the temperature and ageing time on the NiCr23Co12Mo alloy microstructure,” Rev. Chim., vol. 68, no. 4, pp. 737–741, 2017, doi: 10.37358/rc.17.4.5541.
  • [21] R. Viswanathan et al., “U.S. program on materials technology for ultra-supercritical coal power plants,” J. Mater. Eng. Perform., vol. 14, pp. 281–292, 2005, doi: 10.1361/10599490524039.
  • [22] P.J. Maziasz, J.P. Shingledecker and N.D. Evans, “Developing new cast austenitic stainless steels with improved hightemperature creep resistance,” J. Press. Vessel Technol.-Trans. ASME, vol. 131, p. 051404, 2009, doi: 10.1115/1.3141437.
  • [23] A. Iseda and H. Okada, “Creep properties and Microstructure of Super 304H, TP347HFG, HR3C,” Proc. of the 5th International Conference Advances in Materials Technology for Fossil Power Plants EPRI, USA, 2007, pp. 61–62.
  • [24] G. Golański, “Żarowytrzymałe stale austenityczne,” Wydawnictwo Wydziału Inżynierii Produkcji i Technologii Materiałów, Częstochowa, 2017 (in Polish).
  • [25] F. Abe, “Research and development of heat-resistant materials for advanced USC power plants with steam temperatures of 700°C and above,” Engineering, vol. 1, pp. 211–224, 2015, doi: 10.15302/j-eng-2015031.
  • [26] A. Di Gianfrancesco, Materials for ultra-supercritical and advanced ultra-supercritical power plants, 1st ed.,Woodhead Publishing, 2016.
  • [27] A. Zieliński, J. Dobrzański, H. Purzyńska, and G. Golański, “Properties, structure and creep resistance of austenitic steel Super 304H,” Mater. Test., vol. 57, pp. 859–865, 2015, doi: 10.3139/120.110791.
  • [28] Z. Zhong, Y. Gu, and Y. Yuan, “Microstructural stability and mechanical properties of a newly developed Ni–Fe-base superalloy,” Mat. Sci. Eng. A-Struct., vol. 622, pp. 101–107, 2015, doi: 10.1016/j.msea.2014.11.010.
  • [29] A. Zieliński, M. Miczka, and M. Sroka, “The effect of temperature on the changes of precipitates in low-alloy steel,” Mater. Sci. Tech.-Lond., vol. 32, no. 18, pp. 1899–1910, 2016, doi: 10.1080/02670836.2016.1150242.
  • [30] J. Horváth, J. Janovec, and M. Junek, “The changes in mechanical properties of austenitic creep resistant steels SUPER 304H and HR3C caused by medium-term isothermal ageing,” Solid State Phenom., vol. 258, pp. 639–642, 2017, doi: 10.4028/www.scientific.net/ssp.258.639.
  • [31] A. Zieliński, R. Wersta, and M. Sroka, “The study of the evolution of the microstructure and creep properties of Super 304H austenitic stainless steel after ageing for up to 50,000 h,” Arch. Civ. Mech. Eng., vol. 22, p. 89, 2022, doi: 10.1007/s43452-022-00408-6.
  • [32] A. Zieliński, R. Wersta, and M. Sroka, “Analysis of the precipitation process of secondary phases after long-term ageing of the S304H steel,” Bull. Pol. Acad. Sci. Tech. Sci., vol. 69, no. 5, p. e137520, 2021, doi: 10.24425/bpasts.2021.137520.
  • [33] M. Sroka, A. Zieliński, M. Dziuba-Kałuża, M. Kremzer, M. Macek, and A. Jasiński, “Assessment of the residual life of steam pipeline material beyond the computational working time,” Metals-Basel, vol. 7, p. 82, 2017, doi: 10.3390/met7030082.
  • [34] G. Golański, A. Zieliński, M. Sroka, and J. Słania, “The effect of service on microstructure and mechanical properties of HR3C heat-resistant austenitic stainless steel,” Materials, vol. 13, p. 1297, 2020, doi: 10.3390/ma13061297.
  • [35] P. Duda, Ł. Felkowski, J. Dobrzański, and H. Purzyńska, “Modelling the strain and stress state under creep conditions in P91 steel,” Mater. High Temp., vol. 33, pp. 85–93, 2016, doi: 10.1080/09603409.2015.1113021.
  • [36] Z. Liang, Q. Zhao, J. Deng, and Y. Wang, “Influence of ageing treatment on the microstructure and mechanical properties of T92/Super 304H dissimilar metal welds,” Mater. High Temp., vol. 35, no. 4, pp. 327–334, 2018, doi: 10.1080/09603409.2017.1334857.
  • [37] P. Ou, H. Xing, X.L. Wang, and J. Sun, “Tensile yield behavior and precipitation strengthening mechanism in Super304H steel,” Mater. Sci. Eng. A-Struct., vol. 600, pp. 171–175, 2014, doi: 10.1016/j.msea.2014.01.085.
  • [38] X. Jin, X. Xia, Y. Li, Y. Zhao, F. Xue, and G. Zhang, “Quantitative study of microstructure evolution and the effect on mechanical properties of Super304H during ageing,” Mater. High Temp., vol. 36, no. 5, pp. 459–470, 2019, doi: 10.1080/09603409.2019.1632508.
  • [39] B. Peng, H. Zhang, J. Hong, J. Gao, H. Zhang, J. Li, and Q. Wang, “The evolution of precipitates of 22Cr-25Ni-Mo-Nb-N heat-resistant austenitic steel in long term creep,” Mater. Sci. Eng. A-Struct., vol. 527, pp. 4424–4430, 2010, doi: 10.1016/j.msea.2010.03.089.
  • [40] X. Wang, Y. Li, D. Chen, and J. Sun, “Precipitate evolution during the ageing of Super304H steel and its influence on impact toughness,” Mater. Sci. Eng. A-Struct., vol. 754, pp. 238–245, 2019, doi: 10.1016/j.msea.2019.03.086.
  • [41] Z. Pilecka, J. Budnik, J. Jeziorski, B. Wnęk, and B. Bochentyn, “Nowoczesne technologie XXI w. – przegla˛d, trendy i badania,” Tom 1, Wydawnictwo Naukowe TYGIEL: Lublin, 2019 (in Polish).
  • [42] L. Wei, W. Hao, Y. Cheng, and S. Tan, “Isothermal ageing embrittlement in an Fe-22Cr-25Ni alloy,” Mater. Sci. Eng. A Struct., vol. 737, pp. 40–46, 2018, doi: 10.1016/j.msea.2018.09.023.
  • [43] A. Zieliński, G. Golański, and M. Sroka, “Evolution of the microstructure and mechanical properties of HR3C austenitic stainless steel after ageing for up to 30,000 h at 650–750°C,” Mater. Sci. Eng. A-Struct., vol. 796, p. 139944, 2020, doi: 10.1016/j.msea.2020.139944.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d448e763-d084-43d5-bf31-0acec0167be3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.