PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Stir Casting Process Parameters and Stirrer Blade Geometry on Mechanical Properties of Al MMCs - A Review

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Aluminium matrix composites offer a combination of properties such as lower weight, higher strength, higher wear resistance and many more. The stir casting process is easy to use, involves low cost and is suitable for mass production compared to other manufacturing processes. An in-depth look at recently manufactured aluminium matrix composites and their impact on particle distribution, porosity, wettability, microstructure and mechanical properties of Al matrix composites have all been studied in relation to stirring parameters. Several significant concerns have been raised about the sample’s poor wettability, porosity and particle distribution. Mechanical, thermal, and tribological properties are frequently studied in conjunction with variations in reinforcement proportion but few studies on the effect of stirrer blade design and parameters such as stirrer shape, dimensions and position have been reported. To study the effect of stirrer blade design on particle distribution, computational fluid dynamics is used by rese­archers. Reported multiphysics models were k-ε model and the k-ω model for simulation. It is necessary to analyse these models to determine which one best solves the real-time problem. Stirrer design selection and analysis of its effect on particle distribution using simulation, while taking underlying physics into account, can be well-thought-out as a future area of research in the widely adopted stir casting field.
Twórcy
  • Sardar Vallabhbhai National Institute of Technology, Department of Mechanical Engineering, Surat, Gujarat, India
  • Research Scholar, Department of Mechanical Engineering, Sardar Vallabhbhai National Institute of Technology, Ichchhanath, Surat, 395007, Gujarat, India
  • Sardar Vallabhbhai National Institute of Technology, Department of Mechanical Engineering, Surat, Gujarat, India
Bibliografia
  • [1] J.D. Selvam, I. Dinaharan, R.S. Rai, Matrix and Reinforcement Materials for Metal Matrix Composites, 2021 Elsevier Ltd.
  • [2] M. Haghshenas, Reference Module In Materials Science and Materials Engineering, Metal-Matrix Composites 1-28 (2016). DOI: https://doi.org/10.1016/b978-0-12-803581-8.03950-3
  • [3] J. Suthar, K.M. Patel, Materials and Manufacturing Processes, Processing issues, machining, and applications of aluminum metal matrix composites 33, 5, 499-527 (2018). DOI: https://doi.org/10.1080/10426914.2017.1401713
  • [4] B. Kumar, J.V. Menghani, International Journal of Materials Engineering Innovation, Aluminium-based metal matrix composites by stir casting: A literature review 7, 1, 1-14 (2016). DOI: https://doi.org/10.1504/IJMATEI.2016.077310
  • [5] F. Muhammad, S. Jalal, Advances in Materials Science and Engineering, A Comparative Study of the Impact of the Stirrer Design in the Stir Casting Route to Produce Metal Matrix Composites, 2021 (2021). DOI: https://doi.org/10.1155/2021/4311743
  • [6] P. Samal, P.R. Vundavilli, A. Meher, M.M. Mahapatra, Journal of Manufacturing Processes, Recent progress in aluminum metal matrix composites: A review on processing, Mechanical and Wear Properties 59, 131-152 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.09.010
  • [7] M.Y. Zhou, L.B. Ren, L.L. Fan, Y.W.X. Zhang, T.H. Lu, G.F. Quan, M. Gupta, Journal of Alloys and Compounds, Progress in research on hybrid metal matrix composites, 838, (2020). DOI: https://doi.org/10.1016/j.jallcom.2020.155274
  • [8] A. Ramanathan, P.K. Krishnan, R. Muraliraja, Journal of Manufacturing Processes, A review on the production of metal matrix composites through stir casting - Furnace design, properties, challenges, and research opportunities 42, 213-245 (2019). DOI: https://doi.org/10.1016/j.jmapro.2019.04.017
  • [9] P. Garg, A. Jamwal, D. Kumar, K.K. Sadasivuni, C.M. Hussain, P. Gupta, Journal of Materials Research and Technology, Advance research progresses in aluminium matrix composites: Manufacturing & Applications 8, 5, 4924-4939 (2019). DOI: https://doi.org/10.1016/j.jmrt.2019.06.028
  • [10] M.K. Sahu, R.K. Sahu, Fabrication of Aluminum Matrix Composites by Stir Casting Technique and Stirring Process Parameters Optimization, in: T. Vijayaram, Advanced Casting Technologies 2018, Intechopen (2018). DOI: https://doi.org/10.5772/intechopen.73485
  • [11] A.M. Razzaq, D.L.A. Abdul Majid, M.R. Ishak, M.B. Uday, IOP Conference Series: Materials Science and Engineering, A Brief Research Review for Improvement Methods the Wettability between Ceramic Reinforcement Particulate and Aluminium Matrix Composites 203, 1 (2017). DOI: https://doi.org/10.1088/1757-899X/203/1/012002
  • [12] M. Malaki, A.F. Tehrani, B. Niroumand, M. Gupta, Metals, Wettability in metal matrix composites 11, 7, 1-24 (2021). DOI: https://doi.org/10.3390/met11071034
  • [13] T. Yamamoto, A. Suzuki, S.V. Komarov, Y. Ishiwata, Journal of Materials Processing Technology, Investigation of impeller design and flow structures in mechanical stirring of molten aluminium 261, 164-172 (2018). DOI: https://doi.org/10.1016/j.jmatprotec.2018.06.012
  • [14] H. Singh, G. Singh, H. Kumar, V. Aggarwal, Materials Today: Proceedings, A review on metal matrix composite for automobile applications 43, 320-325 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.11.670
  • [15] H. Zhou, P. Yao, T. Gong, Y. Xiao, Z. Zhang, L. Zhao, K. Fan, M. Deng, Tribology International, Effects of ZrO2 crystal structure on the tribological properties of copper metal matrix composites 138, May, 380-391 (2019). DOI: https://doi.org/10.1016/j.triboint.2019.06.005
  • [16] A. Jamwal, P. Mittal, R. Agrawal, S. Gupta, D. Kumar, K. Sadasivuni, P. Gupta, Journal of Composite Materials, Towards sustainable copper matrix composites: Manufacturing routes with structural, mechanical, electrical and corrosion behaviour, 54, 19, 2635-2649 (2020). DOI: https://doi.org/10.1177/0021998319900655
  • [17] A. Dey, K.M. Pandey, Reviews on Advanced Materials Science, Magnesium metal matrix composites-a review 42, 1, 58-67 (2015).
  • [18] D. Dash, S. Samanta, R.N. Rai, IOP Conference Series: Materials Science and Engineering, Study on Fabrication of Magnesium based Metal Matrix Composites and its improvement in Mechanical and Tribological Properties - A Review 377, 1, (2018). DOI: https://doi.org/10.1088/1757-899X/377/1/012133
  • [19] M.D. Hayat, H. Singh, Z. He, P. Cao, Composites Part A: Applied Science and Manufacturing, Titanium metal matrix composites: An overview, 121, March, 418-438 (2019). DOI: https://doi.org/10.1016/j.compositesa.2019.04.005
  • [20] S. Luo, T. Song, B. Liu, J. Tian, M. Qian, Advanced Engineering Materials, Recent Advances in the Design and Fabrication of Strong and Ductile (Tensile) Titanium Metal Matrix Composites 21, 7, 1-13 (2019). DOI: https://doi.org/10.1002/adem.201801331
  • [21] B.K.Kumar, M.G. Ananthaprasad, K. Gopalakrishna, Indian Journal of Science and Technology, A review on mechanical and tribological behaviors of nickel matrix composites 9, 2 (2016). DOI: https://doi.org/10.17485/ijst/2016/v9i2/82868
  • [22] S. Simões, F. Viana, M.A. L. Reis, M.F. Vieira, Metals, Aluminum and nickel matrix composites reinforced by CNTs: Dispersion/mixture by ultrasonication, 7, 7 (2017). DOI: https://doi.org/10.3390/met7070279
  • [23] E. E. Feldshtein, l. N. Dyachkova, Wear, Wear minimization for highly loaded iron-based MMCs due to the formation of spongy-capillary texture on the friction surface 444-445, 20316 (2020). DOI: https://doi.org/10.1016/j.wear.2019.203161
  • [24] Z. Wang, M. Tan, J. Wang, J. Zeng, F. Zhao, X. Xiao, S. Xu, B. Liu, L. Gong, Q. Sui, R. Zhang, B. Han, J. Liu, Journal of Alloys and Compounds, Core-shell structural iron based metal matrix composite powder for laser cladding 878, 160127 (2021). DOI: https://doi.org/10.1016/j.jallcom.2021.160127
  • [25] Y. Fang, M. Kim, Y. Zhang, Z. Duan, Q. Yuan, J. Suhr, Journal of Manufacturing Processes, Particulate-reinforced iron-based metal matrix composites fabricated by selective laser melting: A systematic review, 74, December, 592-639 (2022). DOI: https://doi.org/10.1016/j.jmapro.2021.12.018
  • [26] J. Wieczorek, B. Oleksiak, J. Łabaj, B. Węcki, M. Mańka, Archives of Metallurgy and Materials, Silver matrix composites - Structure and properties 61, 1, 323-328 (2016). DOI: https://doi.org/10.1515/amm-2016-0060
  • [27] C. Nikhilesh, C. Krishan, Metal Matrix Composites, 2013 Springer, New York.
  • [28] K.U. Kainer, Metal Matrix Composites Custom-made Materials for Automotive and Aerospace Engineering, 2006 Wiley-VCh, Wienheim.
  • [29] K. Suryanarayanan, R. Praveen, S. Raghuraman, International Journal of Innovative research in Science, Engineering and Technology, Silicon Carbide Reinforced Aluminium Metal Matrix Composites for Aerospace Applications: A Literature Review 2, 11, 6336-6344 (2007).
  • [30] V.S. Mann, O.P. Pandey, Wear, Influence of natural beach mineral corundum on the wear characteristics of LM30 aluminium alloy composites, 477, March, (2021). DOI: https://doi.org/10.1016/j.wear.2021.203801
  • [31] A. Kareem, J.A. Qudeiri, A. Abdudeen, T. Ahammed, A. Ziout, Materials, A review on AA 6061 metal matrix composites produced by stir casting 14, 1 (2021). DOI: https://doi.org/10.3390/ma14010175
  • [32] l. Zhang, G. Shi, X. Kun, H. Wu, Q. Li, J. Wu, Z. Wang, Journal of Materials Research and Technology, Phase transformation and mechanical properties of B4C/Al composites 9, 2, 2116-2126 (2020). DOI: https://doi.org/10.1016/j.jmrt.2019.12.042
  • [33] A.R. Kennedy, D.P. Weston, M.I. Jones, Materials Science & Engineering A, Reaction in Al-TiC metal matrix composites 316, 1-2, 32-38 (2001). DOI: https://doi.org/10.1016/s0921-5093(01)01228-X
  • [34] C. Mao, X. Sun, Q. Liang, J. Yang, J. Du, Rare Metals, Interfacial reaction process of the hot-pressed WC/2024Al composite 32, 397-401 (2013). DOI: https://doi.org/10.1007/s12598-013-0116-z
  • [35] B. Tang, Y. Tan, T. Xu, Z. Sun, X. Li, Coatings, Effects of TiB2 Particles Content on Microstructure, Mechanical Properites and Tribological Properties of Ni-based Composite Coatings Reinforced with TiB2, 10, 9 (2020). DOI: https://doi.org/10.3390/coatings10090813
  • [36] K.L. Tee, L. Lu, M.O. Lai, Journal of Materials Processing Technology, in situ processing of Al-TiB2 composite by the stir-casting technique 8990, 513 519 (1999). DOI: https://doi.org/10.1016/s0924-0136(99)00038-2
  • [37] P.S. Shreyas, B.P. Mahesh, S. Rajanna, N. Rajesh, Materials Today: Proceedings, Evaluating the tribological properties of aluminium based hybrid composites reinforced with Al2O3 & ZrO2 nano particles 5, 429-433 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.12.1012
  • [38] M. Rajasekar, U.M. Faizal, S. Sudhagar, P. Vijayakumar, Materials Today: Proceedings, influence of heat treatment on tribological behavior of Al/ZrO2/fly ash hybrid composite 45, 774-779 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.02.805
  • [39] V. Khalili, A. Heidarzadeh, S. Moslemi, L. Fathyunes, Journal of Materials Research and Technology, Production of Al6061 matrix composites with ZrO2 ceramic reinforcement using a low-cost stir casting technique: Microstructure, mechanical properties, and electrochemical behavior 9, 6, 15072-15086 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.10.095
  • [40] https://www.azonano.com/article.aspx?articleid=3351, accessed: 25.11.2022
  • [41] L. Fan, L. Yang, D. Zhao, L. Ma, C. He, F. He, C. Shi, J. Sha, N. Zhao, Materials, Balancing Strength and Ductility in Al Matrix Composites Reinforced by Few-layered MoS2 through In-Situ Formation of Interfacial Al12Mo 14, 13 (2021). DOI: https://doi.org/10.3390/ma14133561
  • [42] N. Kumar, R.K. Gautam, S. Mohan, Materials and Design, In-Situ development of ZrB2 particles and their effect on microstructure and mechanical properties of AA5052 metal-matrix composites 80, 129-136 (2015). DOI: https://doi.org/10.1016/j.matdes.2015.05.020
  • [43] I. Dinaharan, Liquid metallurgy processing of intermetallic matrix composites, in: R. Mitra, Intermetallic Matrix Composites Properties and Applications, Woodhead Publishing 2017.
  • [44] J.D.R. Selvam, I. Dinaharan, Engineering Science and Technology, an International Journal, In Situ formation of ZrB2 particulates and their influence on microstructure and tensile behavior of AA7075 aluminum matrix composites 20, 1, 187-196 (2017). DOI: https://doi.org/10.1016/j.jestch.2016.09.006
  • [45] L. Ci, Z. Ryu, N.Y. Jin-Phillipp, M. Ruhle, Acta Materialia, Investigation of the interfacial reaction between multi-walled carbon nanotubes and aluminum 54, 5367-5375 (2006). DOI: https://doi.org/10.1016/j.actamat.2006.06.031
  • [46] J. Li, X. Zhang, L. Geng, Composites Part A, Effect of heat treatment on interfacial bonding and strengthening efficiency of graphene in GNP/Al composites 121, April, 487-498 (2019). DOI: https://doi.org/10.1016/j.compositesa.2019.04.010
  • [47] J.B. Rao, D.V. Rao, I.N. Murthy, N. Bhargava, Journal of Composite Materials, Mechanical properties and corrosion behaviour of fly ash particles reinforced AA 2024 composites 46, 12, 1393-1404 (2012). DOI: https://doi.org/10.1177/0021998311419876
  • [48] S. Kumar, R. Singh, M.S.J. Hashmi, Advances in Materials and Processing Technologies, Metal matrix composite: a methodological review 6, 1, 13-24 (2020). DOI: https://doi.org/10.1080/2374068X.2019.1682296
  • [49] M. Meignanamoorthy, M. Ravichandran, Mechanics and Mechanical Engineering, Synthesis of metal matrix composites via powder metallurgy route: A review 22, 1, 65-75 (2018). DOI: https://doi.org/10.2478/mme-2018-0007
  • [50] G.A.W. Sweet, B.W. Williams, A. Taylor, R.L. Hexemer, I.W. Donaldson, D.P. Bishop, Journal of Materials Processing Technology, A microstructural and mechanical property investigation of a hot upset forged 2xxx series aluminum powder metallurgy alloy reinforced with AIN, 284, May, (2020). DOI: https://doi.org/10.1016/j.jmatprotec.2020.116742
  • [51] S. Sun, N. Deng, H. Zhang, L. He, H. Zhou, B. Han, K. Gao, X. Wang, Journal of Materials Research and Technology, Microstructure and Mechanical Properties of AZ31 magnesium alloy reinforced with novel sub-micron vanadium particles by powder metallurgy 15, 1789-1800 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.09.015
  • [52] N. Gangil, A.N. Siddiquee, S. Maheshwari, Journal of Alloys and Compounds, Aluminium based in-situ composite fabrication through friction stir processing: A review 715, 91-104 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.04.309
  • [53] I. Dinaharan, N. Murugan, E.T. Akinlabi, Friction Stir Processing Route for Metallic Matrix Composite Production, 2021 Elsevier Ltd.,
  • [54] N. Bharat, P.S.C. Bose, Materials Today: Proceedings, an overview on the effect of reinforcement and wear behaviour of metal matrix composites 46, 707-713 (2021). DOI: https://doi.org/10.1016/j.matpr.2020.12.084
  • [55] M. Narimani, B. Lotfi, Z. Sadeghian, Materials science and Engineering A, Investigating the microstructure and mechanical properties of Al-TiB2 composite fabricated by Friction Stir Processing (FSP) 673, 436-442 (2016). DOI: https://doi.org/10.1016/j.msea.2016.07.086
  • [56] A. Evans, C. Marchi, A. Mortensen, Metal Matrix Composites in Industry: An Introduction and a Survey, 2003 Kluwer Academic Publishers.
  • [57] Y. Chen, Y. Huang, L. Han, D. Liu, L. Luo, C. Li, C. Liu, Z. Wang, Journal of Materials Research and Technology, High-strength vacuum diffusion bonding of Cu-plated, sandblasted W and Cu-CrZr alloy, 15, November-December, 6260-6271 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.11.0691
  • [58] https://www.phase-trans.msm.cam.ac.uk/2005/amir/bond.html, accessed: 28.11.2022
  • [59] R. Etemadi, B. Wang, K.M. Pillai, B. Niroumand, E. Omrani, P. Rohatgi, Materials and Manufacturing Processes, Pressure infiltration processes to synthesize metal matrix composites - A review of metal matrix composites, the technology and process simulation 33, 12, 1261-1290 (2018). DOI: https://doi.org/10.1080/10426914.2017.1328122
  • [60] A.M.S-De-la-Muela, L.E.G. Cambronero, J.M. Ruiz-Román, Metals, Molten metal infiltration methods to process metal matrix syntactic foams 10, 1, (2020). DOI: https://doi.org/10.3390/met10010149
  • [61] M. Yamamoto, Y. Nishimura, M. Hayashida, Journal of Alloys and Compounds, Influence of Al particles as infiltration promoters on the interfacial reaction and mechanical property of a continuous SiC fiber/AZ91 composite fabricated by a low-pressure infiltration method, 887, (2021). DOI: https://doi.org/10.1016/j.jallcom.2021.161461
  • [62] N. Bouzegzi, D. Miroud, F. Ahnia, G. Alcala, F. Perez, K. Khenfer, M. Tata, S. Mato, Journal of Alloys and Compounds, Microstructural and Electrochemical Study of a brazed WC based metal matrix composite obtained by infiltration process 759, 22-31 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.05.141
  • [63] A. Sankhla, K.M. Patel, Advances in Materials and Processing Technologies, Metal Matrix Composites Fabricated by Stir Casting Process - A Review 8, 2, 1270-1291 (2021). DOI: https://doi.org/10.1080/2374068X.2020.1855404
  • [64] G. Nageswaran, S. Natarajan, K.R. Ramkumar, Journal of Alloys and Compounds, synthesis, structural characterization, mechanical and wear behaviour of Cu-TiO2-Gr hybrid composite through stir casting technique 768, 733-741 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.07.288
  • [65] l. Singh, B. Singh, K.K. Saxena, Advances in Materials and Processing Technologies, Manufacturing Techniques for metal matrix composites (MMC): An overview 6, 2, 224-240 (2020). DOI: https://doi.org/10.1080/2374068X.2020.1729603
  • [66] M. Dhanashekar, V.S. Senthil Kumar, Procedia Engineering, Squeeze casting of aluminium metal matrix composites - An overview 97, 412-420 (2014). DOI: https://doi.org/10.1016/j.proeng.2014.12.265
  • [67] N.S. Kumar, Materials Today: Proceedings, Fabrication and characterization of Al7075/RHA/Mica composite by squeeze casting 37, Part 2, 750-753 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.05.769
  • [68] S.D. Kumar, M. Ravichandran, A. Jeevika, B. Stalin, C. Kailasanathan, A. Karthick, Ceramics international, Effect of ZrB2 on microstructural, mechanical and corrosion behaviour of aluminium (AA7178) alloy matrix composite prepared by the stir casting route 47, 9, 12951-12962 (2021). DOI: https://doi.org/10.1016/j.ceramint.2021.01.158
  • [69] A. Alizadeh, A. Khayami, M. Karamouz, M. Hajizamani, Ceramics International, Mechanical properties and wear behavior of Al5083 matrix composites reinforced with high amounts of SiC particles fabricated by combined stir casting and squeeze casting: A comparative study 48, 1, 179-189 (2022). DOI: https://doi.org/10.1016/j.ceramint.2021.09.093
  • [70] H.I. Akbar, E. Surojo, D. Ariawan, A.R. Prabowo, F. Imanullah, Heliyon, Fabrication of AA6061-sea sand composite and analysis of its properties 7, 8 (2021). DOI: https://doi.org/10.1016/j.heliyon.2021.e07770
  • [71] A.A. Adediran, A.A. Akinwande, O.A. Balogun, O.S. Adesina, A. Olayanju, T. Mojisola, Scientific African, Evaluation of the properties of Al-6061 alloy reinforced with particulate waste glass, 12 (2021). DOI: https://doi.org/10.1016/j.sciaf.2021.e00812
  • [72] R. Farajollahi, H.J. Aval, R. Jamaati, Journal of Alloys and Compounds, Effects of Ni on the microstructure, mechanical and tribological properties of AA2024-Al3NiCu composite fabricated by stir casting process, 887 (2021). DOIi: https://doi.org/10.1016/j.jallcom.2021.161433
  • [73] R. Balachandhar, R. Balasundaram, M. Ravichandran, Journal of Magnesium and Alloys, Analysis of surface roughness of rock dust reinforced AA6061-Mg matrix composite in turning 9, 5, 1669-1676 (2021). DOI: https://doi.org/10.1016/j.jma.2021.03.035
  • [74] K.O. Babaremu, O.O. Joseph, E.T. Akinlabi, T.C. Jen, O.P. Oladijo, Heliyon, Morphological investigation and mechanical behaviour of agrowaste reinforced aluminium alloy 8011 for service life improvement 6, 11 (2020). DOI: https://doi.org/10.1016/j.heliyon.2020.e05506
  • [75] J. Zhu, W. Jiang, G. Li, F. Guan, Y. Yu, Z. Fan, Journal of Materials Processing Technology, Microstructure and mechanical properties of SiCnp/Al6082 aluminum matrix composites prepared by squeeze casting combined with stir casting, 283, January, (2020). DOI: https://doi.org/10.1016/j.jmatprotec.2020.116699
  • [76] V. Mohanavel, K.S.A. Ali, S. Prasath, T. Sathish, M. Ravichandran, Journal of Materials Research and Technology, Microstructural and tribological characteristics of AA6351/Si3N4 composites manufactured by stir casting 9, 6, 14662-14672 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.09.128
  • [77] S. Sahoo, S. Samal, B. Bhoi, Materials Today Communications, Fabrication and characterization of novel Al-SiC-hBN self-lubricating hybrid composites, 25, June, (2020). DOI: https://doi.org/10.1016/j.mtcomm.2020.101402
  • [78] S. Gudipudi, S. Nagamuthu, K.S. Subbian, S.P.R. Chilakalapalli, Engineering Science and Technology, An International Journal, Enhanced mechanical properties of AA6061-B4C composites developed by a novel ultra-sonic assisted stir casting 23, 5, 1233-1243 (2020). DOI: https://doi.org/10.1016/j.jestch.2020.01.010
  • [79] M. Shayan, B. Eghbali, B. Niroumand, Materials science and Engineering A, Synthesis of AA2024-(SiO2np+TiO2np) hybrid nanocomposite via stir casting process, 756, February, 484-491 (2019). DOI: https://doi.org/10.1016/j.msea.2019.04.089
  • [80] B. Subramaniam, B. Natarajan, B. Kaliyaperumal, S.J.S. Chelladurai, Materials Research Express, Wear behaviour of aluminium 7075 - boron carbide - coconut shell fly ash reinforced hybrid metal matrix composites 6, 10, 449-456 (2019). DOI: https://doi.org/10.1088/2053-1591/ab4052
  • [81] J.D.R. Selvam, I. Dinaharan, S.V. Philip, P.M. Mashinini, Journal of Alloys and Compounds, Microstructure and mechanical characterization of in situ synthesized AA6061/(TiB2+Al2O3) hybrid aluminum matrix composites 740, 529-535 (2018). DOI: https://doi.org/10.1016/j.jallcom.2018.01.016
  • [82] M.E. Turan, F. Aydin, Y. Sun, H. Zengin, Y. Akinay, Tribology International, Wear resistance and tribological properties of GNPs and MWCNT reinforced AlSi18CuNiMg alloys produced by stir casting, 164, April, (2021). DOI: https://doi.org/10.1016/j.triboint.2021.107201
  • [83] S. Sharma, J. Singh, M. Gupta, M. Mia, S. Dwivedi, A. Saxena, S. Chattopadhyaya, R. Singh, D.Y. Pimenov, M. Korkmaz, Journal of Materials Research and Technology, Investigation on mechanical, tribological and microstructural properties of Al-Mg-Si-T6/SiC/muscovite-hybrid metal-matrix composites for high strength applications 12, 1564-1581 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.03.095
  • [84] M.S. Kumar, M. Vasumathi, S.R. Begum, S.M. Luminita, S.Vlase, C.I. Pruncu, Journal of Materials Research and Technology, Influence of B4C and industrial waste fly ash reinforcement particles on the micro structural characteristics and mechanical behawior of aluminium (Al-Mg-Si-T6) hybrid metal matrix composite 15, 1201-1216 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.08.149
  • [85] G.B. Rao, P.K. Bannaravuri, R. Raja, K.C. Apparao, P.S. Rao, T.S. Rao, A.K. Birru, R.M.R. Prince, International Journal of Lightweight Materials and Manufacture, Impact on the microstructure and mechanical properties of Al-4.5Cu alloy by the addition of MoS2 4, 3, 281-289 (2021). DOI: https://doi.org/10.1016/j.ijlmm.2021.01.001
  • [86] T. Wang, X. Zuo, Y. Zhou, J. Tian, S. Ran, Journal of Materials Research and Technology, high strength and high ductility nano-Ni-Al2O3/A356 composites fabricated with nickel-plating and equal channel angle semi-solid extrusion (ECASE), 13, 1615-1627 (2021). DOI: https://doi.org/10.1016/j.jmrt.2021.05.083
  • [87] Q. Hu, W. Guo, P. Xiao, J. Yao, Physica B: Condensed Matter, First-principles investigation of mechanical, electronic, dynamical, and thermodynamic properties of Al3BC, 616, March, (2021). DOI: https://doi.org/10.1016/j.physb.2021.413127
  • [88] V.S. Aigbodion, P.O. Ozor, M.N. Eke, C.U. Nwoji, Chemical Data Collections, Explicit microstructure, corrosion, and stress analysis of value-added Al-3.7%Cu-1.4%Mg/1.5% rice husk ash nanoparticles for pump impeller application, 33, (2021). DOI: https://doi.org/10.1016/j.cdc.2021.100675
  • [89] S. Singh, K. Pal, Ceramics International, Investigation on microstructural, mechanical and damping properties of SiC/TiO2, SiC/Li4Ti5O12 reinforced Al matrix 47, 10, 14809-14820 (2021). DOI: https://doi.org/10.1016/j.ceramint.2020.10.068
  • [90] K. Velavan, K. Palanikumar, E. Natarajan, W.H. Lim, Journal of Materials Research and Technology, Implications on the influence of mica on the mechanical properties of cast hybrid (Al+10%B4C+Mica) metal matrix composite 10, 99-109 (2021). DOI: https://doi.org/1016/j.jmrt.2020.12.004
  • [91] P. Zhang, W. Zhang, Y. Du, Y. Wang, Journal of Manufacturing Processes, high-performance Al-1.5 wt% Si-Al2O3 composite by vortex-free high-speed stir casting, 56, December, 1126-1135 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.06.016
  • [92] W.Y. Zhang, Y.H. Du, P. Zhang, Journal of Alloys and Compounds, Vortex-free stir casting of Al-1.5 wt% Si-SiC composite 787, 206-215 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.02.099
  • [93] N. Ramadoss, K. Pazhanivel, G. Anbuchezhiyan, Journal of Materials Research and Technology, Synthesis of B4C and BN reinforced Al7075 hybrid composites using stir casting method 9, 3, 6297-6304 (2020). DOI: https://doi.org/10.1016/j.jmrt.2020.03.043
  • [94] J.V. Christy, R. Arunachalam, A.H.I. Mourad, P.K. Krishnan, S. Piya, M. Al-Maharbi, Journal of Manufacturing Processes, Processing, Properties, and Microstructure of Recycled Aluminium Alloy Composites Produced Through an Optimized Stir and Squeeze Casting Processes, 59, December, 287-301 (2020). DOI: https://doi.org/10.1016/j.jmapro.2020.09.067
  • [95] G. Karthikeyan, G. Elatharasan, S. Thulasi, P. Vijayalakshmi, Materials Today: Proceedings, Tensile, compressive and heat transfer analysis of ZrO2 reinforced aluminum LM6 alloy metal matrix composites 37, Part 2, 303-309 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.05.270
  • [96] M.H. Faisal, V. Sreekumar, N.M. Nidhiry, Materials Today: Proceedings, Comparison of mechanical and wearing properties between LM6, LM6/B4C and LM6/B4C/Gr aluminium metal matrix composites 43, 3916-3921 (2020). DOI: https://doi.org/10.1016/j.matpr.2021.01.340
  • [97] J. Xue, W. Wu, J. Ma, H. Huang, Z. Zhao, Materials Science and Engineering A, study on the effect of CeO2 for fabricating in-situ TiB2/A356 composites with improved mechanical properties, 786, December, (2020). DOI: https://doi.org/10.1016/j.msea.2020.139416
  • [98] S.L. Pramod, Ravikirana, A.K.P. Rao, B.S. Murty, S.R. Bakshi, Materials Science and Engineering A, Microstructure and mechanical properties of as-cast and T6 treated Sc modified A356-5TiB2 in-situ composite, 739, October, 383-394 (2019). DOI: https://doi.org/10.1016/j.msea.2018.10.080
  • [99] S. Ma, X. Wang, Materials Science and Engineering A, Mechanical properties and fracture of in-situ Al3Ti particulate reinforced A356 composites, 754, January, 46-56 (2019). DOI: https://doi.org/10.1016/j.msea.2019.03.044
  • [100] P.K. Krishnan, J.V. Christy, R. Arunachalam, A-H. I. Mourad, R. Murliraja, M. Al-Maharbi, V. Murli, M.M. Chandra, Journal of Alloys and Compounds, Production of aluminum alloy-based metal matrix composites using scrap aluminum alloy and waste materials: influence on microstructure and mechanical properties, 784, 1047-1061 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.01.115
  • [101] A.H. Idrisi, A.H.I. Mourad, Journal of Alloys and Compounds, Conventional stir casting versus ultrasonic assisted stir casting process: Mechanical and physical characteristics of AMCs 805, 502-508 (2019). DOI: https://doi.org/10.1016/j.jallcom.2019.07.076
  • [102] J. Suthar, K. Patel, Heliyon, Identification, screening and optimization of significant parameters for stir cast hybrid aluminium metal matrix composite 4, 12, (2018). DOI: https://doi.org/10.1016/j.heliyon.2018.e00988
  • [103] V.R. Mehta, M.P. Sutaria, Metals and Materials International, Investigation on the Effect of Stirring Process Parameters on the Dispersion of SiC Particles Inside Melting Crucible 27, 8, 2989-3002 (2021). DOI: https://doi.org/10.1007/s12540-020-00612-0
  • [104] M.S. Kumar, S.R. Begum, C.I. Pruncu, M.S. Asl, Journal of Alloys and Compounds, Role of homogeneous distribution of SiC reinforcement on the characteristics of stir casted Al-SiC composites, 869 (2021). DOI: https://doi.org/10.1016/j.jallcom.2021.159250
  • [105] P.K. Krishnan, R. Arunachalam, A. Husain, M. Al-Maharbi, Journal of Manufacturing Science and Engineering, Transactions of the ASME, Studies on the influence of stirrer blade design on the microstructure and mechanical properties of a novel aluminium metal matrix composite 143, 2 (2021). DOI: https://doi.org/10.1115/1.4048266
  • [106] A. Kumar, R.S. Rana, R. Purohit, Advances in Materials and Processing Technologies, Effect of stirrer design on microstructure of MWCNT and Al alloy by stir casting proces 6, 2, 372-379 (2020). DOI: https://doi.org/10.1080/2374068X.2020.1731156
  • [107] T. Tamilanban, T.S. Ravikumar, S. Kanthasamy, IOP Conference Series: Materials Science and Engineering, Influence of stirrer blade design on stir casting of Al Mg Cu/12% SiC composite 988, 1, (2020). DOI: https://doi.org/10.1088/1757-899X/988/1/012062
  • [108] M.S. Kumar, C.I. Pruncu, P. Harikrishnan, S.R. Begum, M. Vasumathi, Silicon, Experimental Investigation of In-homogeneity in Particle Distribution During the Processing of Metal Matrix Composites 14, 629-641 (2022). DOI: https://doi.org/10.1007/s12633-020-00886-4
  • [109] J.J. Moses, S.J. Sekhar, Transactions of the Indian Institute of Metals, Investigation on the Tensile Strength and Microhardness of AA6061/TiC Composites by Stir Casting 70, 4, 1035-1046 (2017). DOI: https://doi.org/10.1007/s12666-016-0891-y
  • [110] J. J. Moses, I. Dinaharan, S. J. Sekhar, Transactions of Nonferrous Metals Society of China (English Edition), Prediction of influence of process parameters on tensile strength of AA6061/TiC aluminum matrix composites produced using stir casting 26, 6, 1498-1511 (2016). DOI: https://doi.org/10.1016/s1003-6326(16)64256-5
  • [111] R.T. Bui, R. Ouellet, D. Kocaefe, Metallurgical and Materials Transactions B, A two-phase flow model of the stirring of Al-SiC composite melt 25, 4, 607-618 (1994). DOI: https://doi.org/10.1007/BF02650081
  • [112] P.K. Rohatgi, J. Sobczak, R. Asthana, J.K. Kim, Materials Science and Engineering A, Inhomogeneities in silicon carbide distribution in stirred liquids - A water model study for synthesis of composites 252, 1, 98-108 (1998). DOI: https://doi.org/10.1016/s0921-5093(98)00651-0
  • [113] P.K. Biswas, S.C. Dev, K.M. Godiwalla, C.S. Sivaramakrishnan, Materials and Design, Effect of some design parameters on the suspension characteristics of a mechanically agitated sand-water slurry system 20, 5, 253-265 (1999). DOI: https://doi.org/10.1016/s0261-3069(98)00036-3
  • [114] S. Naher, D. Brabazon, L. Looney, Journal of Materials Processing Technology, Simulation of the stir casting process 143144, 1, 567-571 (2003). DOI: https://doi.org/10.1016/s0924-0136(03)00368-6
  • [115] S. Naher, D. Brabazon, L. Looney, Composites Part A: Applied Science and Manufacturing, Computational and experimental analysis of particulate distribution during Al-SiC MMC fabrication 38, 3, 719-729 (2007). DOI: https://doi.org/10.1016/j.compositesa.2006.09.009
  • [116] H. Su, W. Gao, H. Zhang, H. Liu, J. Lu, Z. Lu, Journal of Manufacturing Science and Engineering, Transactions of the ASME, Optimization of stirring parameters through numerical simulation for the preparation of aluminum matrix composite by stir casting process 132, 6, 0610071-0610077 (2010). DOI: https://doi.org/10.1115/1.4002851
  • [117] M.V.S.P. Kumar, M.V.S. Babu, V. Ramana, Journal of Engineering Research and Applications, Simulation of Stir Casting Process Using Computational Fluid Dynamics 5, 8, 132-135 (2015).
  • [118] K.V. Prasad, K.R. Jayadevan, Procedia Technology, Simulation of Stirring in Stir Casting 24, 356-363 (2016). DOI: https://doi.org/10.1016/j.protcy.2016.05.048
  • [119] K. Rajendra, M.V.S Babu, P. Srinivas, IOP Conference Series: Materials Science and Engineering, Stir Casting Process Simulation by Computational Fluid Dynamics for uniform Nano particles distribution in Al Semi Solid Metal 377, 1 (2018). DOI: https://doi.org/0.1088/1757-899X/377/1/012191
  • [120] M. Foukrach, M. Bouzit, H. Ameur, Y. Kamla, Chinese Journal of Mechanical Engineering (English Edition), Effect of Agitator’s Types on the Hydrodynamic Flow in an Agitated Tank 33, 1 (2020). DOI: https://doi.org/10.1186/s10033-020-00454-2
  • [121] W.P. Jones, B.E. Launder, International Journal of Heat and Mass Transfer, The prediction of laminarization with a two-equation model of turbulence 15, 301-314 (1972). DOI: https://doi.org/10.1016/0017-9310(72)90076-2
  • [122] S.P. Ruiz, Study of flow fields in mixing tanks with particles using CFD, PHD thesis, LUND University, June 2021.
  • [123] https://www.comsol.com/blogs/which-turbulence-model-should-choose-cfd application/, accessed: 10.07.2022
  • [124] D.C. Wilcox (3rd ed.), Turbulence Modelling for CFD, 2006 DCW industries.
  • [125] https://www.afs.enea.it/project/neptunius/docs/fluent/html/th/node66.htm, accessed: 10.07.2022
  • [126] D.K. Rajak, P.L. Menezes, Application of Metal Matrix Composites in Engineering Sectors, 2021 Elsevier Ltd.
  • [127] E.A.M. Shalaby, A.Y. Churyumov, Journal of Alloys and Compounds, Development and characterization of A359/AlN composites for automotive applications 727, 540-548 (2017). DOI: https://doi.org/10.1016/j.jallcom.2017.08.154
  • [128] S. Senthil, M. Raguraman, D.T. Manalan, Materials Today: Proceedings, Manufacturing Processes & Recent Applications of aluminium metal matrix composite materials: A review 45, 5934-5938 (2020). DOI: https://doi.org/10.1016/j.matpr.2020.08.792
  • [129] V.M. Kumar, C.V. Venkatesh, Materials Research Express, A comprehensive review on material selection, processing, characterization and applications of aluminium metal matrix composites 6, 7 (2019). DOI: https://doi.org/10.1088/2053-1591/ab0ee3
  • [130] F. Nturanabo, L. Masu, J.B. Kirabira, Novel Applications of Aluminium Metal Matrix Composites, in: K. Cooke, Aluminium Alloys and Composites 2020, Intechopen 2020. DOI: https://doi.org/10.5772/intechopen.86225
  • [131] https://ceramics.ferrotec.com/materials/metal-matrix/al-sic/, accessed: 06.12.2022
  • [132] https://www.ceramtec.in/ceramic-materials/metal-matrix-composites/, accessed: 06.12.2022
  • [133] https://ii-vi.com/product/metal-matrix-composites/, accessed: 06.12.2022
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d445a0c7-b056-4c3b-85a3-81351dc6e17e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.