PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Contribution of on-site Coulomb repulsion energy to structural, electronic and magnetic properties of SrCoO3 for different space groups: first-principles study

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We report structural, electronic, and magnetic properties of SrCoO3 in Pm3m and P4/mbm space groups, which are calculated by using generalized gradient approximation corrected with on-site Coulomb repulsion U and exchange energies J. The cubic lattice parameter a and local magnetic moments of Co (µCo) are optimized by varying U at Co 3d site. Employing ultrasoft pseudopotential, the values of U = 8 eV and J = 0.75 eV are the best choice for Pm3m space group. We found the value of (µCo) = 2.56 µB, which is consistent with the previous results. It was also found that Co 3d, hybridized with O 2p, is the main contributor to ferromagnetic metallic properties. Besides, norm-conserving pseudopotential promotes a, which is in good agreement with experimental result. However, it is not suitable for P4/mbm space group. By using ultrasoft pseudopotential, the value of U = 3 eV (J = 0.75) is the most suitable for P4/mbm group. Ferromagnetic metallic properties, Jahn-Teller distortion, and reasonable lattice parameters have been obtained. This study shows that U has significant contribution to the calculated properties and also points out that P4/mbm space group with US-PP is suitable to describe experimental results.
Wydawca
Rocznik
Strony
846--856
Opis fizyczny
Bibliogr. 49 poz., rys., tab.
Twórcy
autor
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
  • Department of Physics, Faculty of Mathematics and Natural Sciences, Institut Teknologi Bandung, Ganesha 10, Bandung 40132, Indonesia
Bibliografia
  • [1] VERMA A., RAGHAVAN S., STEMMER S., JENA D., Appl. Phys. Lett., 107 (2015), 192908.
  • [2] RIVERO P., CAZORLA C., Phys. Chem. Chem. Phys., 18 (2016), 30686.
  • [3] KAMBA S., GOIAN V., SKOROMETS V., HEJTMÁNEK J., BOVTUN V., KEMPA M., BORODAVKA F., VANĚK P., BELIK A., LEE J., Phys. Rev. B, 89 (2014), 064308.
  • [4] SUSHRISANGITA S., MAHAPATRA P.K., CHOUDHARY R.N.P., J. Physics D Appl. Phys., 49 (2016), 035302.
  • [5] LEE J.H., RABE K.M., Phys. Rev. Lett., 107 (2011), 067601.
  • [6] SEÑARIŚ-RODRIǴUEZ M.A., GOODENOUGH J.B., J. Solid State Chem., 116 (1995), 224.
  • [7] UCHIDA H., ARISAKA S., WATANABE M., Solid State Ion., 135 (2000), 347.
  • [8] SUTJAHJA I., BERTHALITA F., MUSTAQIMA M., NUGROHO A., TJIA M., Mater. Sci.-Poland, 33 (2015), 579.
  • [9] LONG Y., KANEKO Y., ISHIWATA S., TAGUCHI Y., TOKURA Y., J. Phys. Condens. Mat., 23 (2011), 245601.
  • [10] HAI-PING W., KAI-MING D., FENG-LAN H., WEISHI T., CHUN-MEI T., QUN-XIANG L., Chin. Phys. Lett., 26 (2009), 017105.
  • [11] NEMUDRY A., RUDOLF P., SCHÖLLHORN R., Chem. Mater., 8 (1996), 2232.
  • [12] JAYA S.M., JAGADISH R., RAO R., ASOKAMANI R., Phys. Rev. B, 43 (1991), 13274.
  • [13] KUNEŠ J., KŘÁPEK V., PARRAGH N., SANGIOVANNI G., TOSCHI A., KOZHEVNIKOV A., Phys. Rev. Lett., 109 (2012), 117206.
  • [14] HAI-PING W., DONG-GUO C., DE-CAI H., KAIMING D., Acta Phys. Sin., 61 (2012), 037101.
  • [15] HOFFMANN M., BORISOV V.S., OSTANIN S., MERTIG I., HERGERT W., ERNST A., Phys. Rev. B, 92 (2015), 094427.
  • [16] ZHUANG M., ZHANG W., HU A., MING N., Phys. Rev. B, 57 (1998), 13655.
  • [17] KOTLIAR G., SAVRASOV S.Y., HAULE K., OUDOVENKO V.S., PARCOLLET O., MARIANETTI C., Rev. Mod. Phys., 78 (2006), 865.
  • [18] MAVROPOULOS P., PAPANIKOLAOU N., The Korringa- Kohn-Rostoker (KKR) Green Function Method I. Electronic Structure of Periodic Systems, in: GROTENDORST J, BLÜGEL S, MARX D, (Eds.), Computational Nanoscience: Do It Yourself!, John von Neumann Institute for Computing, Jülich, 2006. p. 131.
  • [19] AMOS T., SNYDER L.C., J. Chem. Phys., 41 (1964), 1773.
  • [20] RAD A.S., KASHANI O.R., Appl. Surf. Sci., 355 (2015), 233.
  • [21] ATANASOV M., ARAVENA D., SUTURINA E., BILL E., MAGANAS D., NEESE F., Coord. Chem. Rev., 289 - 290 (2015), 177.
  • [22] YANG J., HU W., USVYAT D., MATTHEWS D., SCHÜTZ M., CHAN G.K.-L., Science, 345 (2014), 640.
  • [23] MUHAMMADY S., KURNIAWAN R., NURFANI E., SUTJAHJA I.M., WINATA T., DARMA Y., J. Phys. Conf. Ser., 776 (2016), 012018.
  • [24] MUHAMMADY S., NURFANI E., KURNIAWAN R., SUTJAHJA I.M., WINATA T., DARMA Y., Mater. Res. Express, 4 (2017), 024002.
  • [25] WANG Y., MA J., ZHOU J.-P., CHEN X.-M., WANG J.-Z., J. Korean Phys. Soc., 68 (2016), 409.
  • [26] PERDEW J.P., BURKE K., ERNZERHOF M., Phys. Rev. Lett., 77 (1996), 3865.
  • [27] GIANNOZZI P., BARONI S., BONINI N., CALANDRA M., CAR R., CAVAZZONI C., CERESOLI D., CHIAROTTI G.L., COCOCCIONI M., DABO I., CORSO A.D., GIRONCOLI S.D., FABRIS S., FRATESI G., GEBAUER R., GERSTMANN U., GOUGOUSSIS C., KOKALJ A., LAZZERI M., MARTIN-SAMOS L., MARZARI N., MAURI F., MAZZARELLO R., PAOLINI S., PASQUARELLO A., PAULATTO L., SBRACCIA C., SCANDOLO S., SCLAUZERO G., SEITSONEN A.P., SMOGUNOV A., UMARI P., WENTZCOVITCH R.M., J. Phys. Condens. Mat., 21 (2009), 395502.
  • [28] HOHENBERG P., KOHN W., Phys. Rev., 136 (1964), B 864.
  • [29] KOHN W., SHAM L.J., Phys. Rev., 140 (1965), A 1133.
  • [30] BROYDEN C.G., Math. Comp., 19 (1965), 577.
  • [31] RAPPE A.M., RABE K.M., KAXIRAS E., JOANNOPOULOS J., Phys. Rev. B, 41 (1990), 1227.
  • [32] VANDERBILT D., Phys. Rev. B, 41 (1990), 7892.
  • [33] BROYDEN C.G., IMA J. Appl. Math., 6 (1970), 76.
  • [34] FLETCHER R., Comput. J., 13 (1970), 317.
  • [35] GOLDFARB D., Math. Comp., 24 (1970), 23.
  • [36] SHANNO D.F., Math. Comp., 24 (1970), 647.
  • [37] LOUIE S.G., FROYEN S., COHEN M.L., Phys. Rev. B, 26 (1982), 1738.
  • [38] REIS C.L., PACHECO J., MARTINS J.L., Phys. Rev. B, 68 (2003), 155111.
  • [39] COCOCCIONI M., GIRONCOLI DE S., Phys. Rev. B, 71 (2005), 035105.
  • [40] ANISIMOV V.I., ZAANEN J., ANDERSEN O.K., Phys. Rev. B, 44 (1991), 943.
  • [41] TROULLIER N., MARTINS J.L., Solid State Commun., 74 (1990), 613.
  • [42] TROULLIER N., MARTINS J.L., Phys. Rev. B, 43 (1991), 1993.
  • [43] TROULLIER N., MARTINS J.L., Phys. Rev. B, 43 (1991), 8861.
  • [44] TAGUCHI H., SHIMADA M., KOIZUMI M., Mater. Res. Bull, 13 (1978), 1225.
  • [45] BALAMURUGAN S., TAKAYAMA-MUROMACHI E., J. Solid State Chem., 179 (2006), 2231.
  • [46] BEZDICKA P., WATTIAUX A., GRENIER J., POUCHARD M., HAGENMULLER P., Z. Anorg. Allg. Chem., 619 (1993), 7.
  • [47] HEYD J., SCUSERIA G.E., ERNZERHOF M., J. Chem. Phys., 118 (2003), 8207.
  • [48] HEYD J., SCUSERIA G.E., ERNZERHOF M., J. Chem. Phys., 124 (2006), 219906.
  • [49] POTZE R., SAWATZKY G., ABBATE M., Phys. Rev. B, 51 (1995), 11501.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d442474e-8802-4238-9ce7-65e82df4fcb1
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.