PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Low-power low-area techniques for multichannel recording circuits dedicated to biomedical experiments

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents techniques introduced to minimize both power and silicon area of the multichannel integrated recording circuits dedicated to biomedical experiments. The proposed methods were employed in multichannel integrated circuit fabricated in CMOS 180nm process and were validated with the use of a wide range of measurements. The results show that both a single recording channel and correction blocks occupy about 0.061 mm2 of the area and consume only 8.5 μW of power. The input referred noise is equal to 4.6 μVRMS. With the use of additional digital circuitry, each of the recording channels may be independently configured. The lower cut-off frequency may be set within the range of 0.1 Hz–700 Hz, while the upper cut-off frequency, depending on the recording mode chosen, can be set either to 3 kHz/13 kHz or may be tuned in the 2 Hz–400 Hz range. The described methods were introduced in the 64-channel integrated circuit. The key aspect of the proposed design is the fact that proposed techniques do not limit functionality of the system and do not deteriorate its overall parameters.
Rocznik
Strony
615--624
Opis fizyczny
Bibliogr. 30 poz., rys., wykr.
Twórcy
autor
  • Department of Measurement and Electronics, AGH University of Science and Technology, 30 Mickiewicza Av., 30-059 Krakow
Bibliografia
  • [1] E. Doi, J. L. Gauthier, G. D. Field, J. Shlens, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, K. Mathieson, D. E. Gunning, A. M. Litke, L. Paninski, E. J. Chichilnisky, and E. P. Simoncelli, “Efficient coding of spatial information in the primate retina”, The Journal of Neuroscience, 32(46), 16256–16264 (2012).
  • [2] L. R. Hochberg, D. Bacher, B. Jarosiewicz, N. Y. Masse, J. D. Simeral, J. Vogel, S. Haddadin, J. Liu, S. S. Cash, P. van der Smagt, and J. P. Donoghue, “Reach and grasp by people with tetraplegia using a neurally controlled robotic arm,” Nature, 485, 372–375 (2012).
  • [3] M. Ballini, J. Müller, P. Livi, Y. Chen, U. Frey, A. Stettler, A. Shadmani, V. Viswam, I. L. Jones, D. Jäckel, M. Radivojevic, M. K. Lewandowska, W. Gong, M. Fiscella, D. J. Bakkum, F. Heer, A. Hierlemann, “A 1024-channel CMOS microelectrode array with 26,400 electrodes for recording and stimulation of electrogenic cells in vitro”, IEEE Journal of Solid-State Circuits, 49(11), 2705–2719 (2014).
  • [4] A. F. Johnstone, G. W. Gross, D. G. Weiss, O. H. Schroeder, A. Gramowski, T. J. Shafer, “Microelectrode arrays: a physiologically based neurotoxicity testing platform for the 21st century”, Neurotoxicology, 31(4), 331–350(2010).
  • [5] Y. H. Chen, M. O. de Beeck, L. Vanderheyden, E. Carrette, V. Mihajlović, K. Vanstreels, B. Grundlehner, S. Gadeyne, P. Boon, Ch. V. Hoof, “Soft, comfortable polymer dry electrodes for high quality ECG and EEG recording”, Sensors, 14(12), 23758–23780(2014).
  • [6] N. V. Helleputte, M. Konijnenburg, J. Pettine, D. W. Jee, H. Kim, A. Morgado, R. V. Wegberg, T. Torfs, R. Mohan, A. Breeschoten, H. de Groot, Ch. V. Hoof, R. F. Yazicioglu, “A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP”, IEEE Journal of Solid-State Circuits, 50(1), 230–244(2015).
  • [7] L. Yan, P. Harpe, V. R. Pamula, M. Osawa, Y. Harada, K. Tamiya, Ch. V. Hoof, R. F. Yazicioglu, “A 680 nA ECG acquisition IC for leadless pacemaker applications”, IEEE Transactions on Biomedical Circuits and Systems, 8(6), 779–786(2014).
  • [8] F. G. Zeng, S. Rebscher, W. V. Harrison, X. Sun, H. Feng, “Cochlear implants: system design, integration and evaluation”, IEEE Review Biomedical Enginering, IEEE Reviews in Biomedical Engineering, 1, 115–142(2008).
  • [9] J. D. Weiland, M. S. Humayun, “Visual prosthesis”, Proceedings of the IEEE, 96(7), 1076–1084(2008).
  • [10] J. Xu, R. Yazicioglu, B. Grundlehner, P. Harpe, K. A. A. Makinwa, C. V. Hoof, “A 160 W 8-channel active electrode system for EEG monitoring,” IEEE Transactions on Biomedical Circuits ans Systems, 5(6) 555–567(2011).
  • [11] P. Harpe, H. Gao, R. V. Dommele, E. Cantatore, A. V. Roermund, “A 3nW signal acquisition IC integrating an amplifier with 2.1 NEF and a 1.5fJ/conversion-step ADC”, Proceedings of the ISSCC 382 (2015).
  • [12] R. F. Yazicioglu, P. Merken, R. Puers, Ch. V. Hoof, “A 60μW 60nV/√Hz readout front-end for portable bipotential acquisition systems”, IEEE Journal of Solid-State Circuits, 42(5), 1100–1110 (2007).
  • [13] R. R. Harrison, “The design of integrated circuits to observe brain activity”, Proceedings of the IEEE, 96(7), 1203–1216(2008).
  • [14] A. Rodríguez-Pérez, M. Delgado-Restituto, A. Darie, C. Soto-Sánchez, E. Fernández-Jover, Á. Rodríguez-Vázquez, “A 330μW, 64-Channel neural recording sensor with embedded spike feature extraction and auto-calibration”, Proceedings of the IEEE Asian Solid-State Circuits Conference, 205–208(2014).
  • [15] R. Shulyzki, K. Abdelhalim, A. Bagheri, M. T. Salam, C. M. Florez, J. L. Perez Velazquez, P. L. Carlen, R. Genov, “320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation”, IEEE Transactions On Biomedical Circuits and Systems, 9(1), 34–49(2015).
  • [16] R. Muller, S. Gambini, J. Rabaey, “A 0.013 mm2, 5 μW, dc-coupled neural signal acquisition IC with 0.5 V supply,” IEEE Journal of Solid State Circuits, 47(1), 232–243(2012).
  • [17] M. Żołądź, P. Kmon, J. Rauza, P. Gryboś, T. Blasiak, “Multichannel neural recording system based on family ASICs processed in submicron technology”, Microelectronics Journal, 45(9), 1226–1231 (2014).
  • [18] P. Kmon, “Digitally assisted neural recording and spike detection multichannel integrated circuit designed in 180nm CMOS technology”, Microelectronics Journal, 45(9), 1187–1193 (2014).
  • [19] J. Ruiz-Amaya, A. Rodríguez-Pérez, M. Delgado-Restituto, “A comparative study of low-noise amplifiers for neural applications,” Proceedings of the 2010 International Conference on Microelectronics, 327–330 (2010).
  • [20] P. Gryboś, Front-end Electronics for Multichannel Semiconductor Detector Systems, WUT Publishing House, Warsaw, Poland, 2010.
  • [21] P. Kmon, “Noise minimization limits in multichannel integrated circuits dedicated to neurobiology experiments”, Microelectronics Journal, Elsevier, 51, 67–74(2016).
  • [22] P. F. Manfredi, M. Manghisoni, L. Ratti, V. Re, V. Speziali, “Resolution limits achievable with CMOS front-end in X- and -ray analysis with semiconductor detectors,” Nucl. Instrum. Methods Phys. Res., A(512), 167–178(2003).
  • [23] P. O. Connor and G. De Geronimo, “Prospects for charge sensitive amplifiers in scaled CMOS,” Nucl. Instrum. Methods Phys. Res., A(480), 713–725(2002).
  • [24] V. Re, M. Manghisoni, L. Ratti, V. Speziali, G. Traversi, “Survey of noise performances and scaling effects in deep submicrometer CMOS devices from different foundries”, IEEE Transactions on Nuclear Science, 52(6), 2733–2740(2005).
  • [25] D. Binkley, Tradeoffs and Optimization in Analog CMOS Design, Wiley, 2008.
  • [26] P. Kmon, P. Gryboś, “Energy efficient low-noise multichannel neural amplifier in submicron CMOS process”, IEEE Transactions on Circuits and Systems, 60(7), 1764–1775 (2013).
  • [27] B. Gosselin, A. E. Ayoub, J.-F. Roy, M. Sawan, F. Lepore, A. Chaudhuri, D. Guitton, “A mixed-signal multichip neural recording interface with bandwidth reduction,” IEEE Transactions on Biomedical Circuits and Systems, 3(3), 129–141(2009).
  • [28] V. Majidzadeh, A. Schmid, Y. Leblebici, “Energy efficient lownoise neural recording amplifier with enhanced noise efficiency factor,” IEEE Transactions on Biomedical Circuits and Sytems, 5(3), 262–271(2011).
  • [29] C. W. Chang, L. C. Chou, P. T. Huang, S. L. Wu, S. W. Lee, C. T. Chuang, K. N. Chen, W. Hwang, K. Hua Chen, C. T. Chiu, H. M. Tong, J. C. Chiou, “A double-sided, single-chip integration scheme using through-silicon-via for neural sensing applications”, Biomedical Microdevices, 17(1), 1–15(2015).
  • [30] C. Mora Lopez, A. Andrei, S. Mitra, M. Welkenhuysen, W. Eberle, C. Bartic, R. Puers, R. F. Yazicioglu, G. Gielen, “An implantable 455-active-electrode 52-channel CMOS neural probe”, IEEE Journal of Solid-State Circuits, 49(1), 248–261(2014).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4402cea-4da0-42a7-8bbc-dbfbec7c0127
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.