Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Ice formed on radome surfaces causes communication disruption due to radio-frequency interference (RFI), which reveals the importance of de-icing systems for radomes. As a radome de-icing application, in this work, carbon nanotube (CNT) thin films were fabricated using a spray-coating method, and influence of process parameters on RF transmittance and electrothermal propertieswas investigated. With the increase of spraying time, sheet resistance of the fabricated film decreases, which results in a decrease of the RF transmittance and improvement of the heating performance. Also, the de-icing capability of the fabricated CNT film was evaluated at –20°C, and efficient removal of ice under cold conditions was demonstrated.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1011--1014
Opis fizyczny
Bibliogr. 19 poz., fot., rys., tab., wzory
Twórcy
autor
- Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
autor
- Agency for Defense Development (ADD), Yuseong P.O. Box 35, Daejeon 34186, Republic of Korea
Bibliografia
- [1] L. S. Groff, J. M. Price, Aviat. Space Environ. Med. 77 (10), 1062-1067 (2006).
- [2] X. Yao, S. C. Hawkins, B. G. Falzon, Carbon 136, 130-138 (2018).
- [3] K. L. Sørensen, A. S. Helland, T. A. Jahansen, IEEE Aero. Conf. 1-6 (2015).
- [4] O. Redondo, S. G. Prolongo, M. Campo, C. Sbarufatti, M. Giglio, Compos. Sci. Technol. 164, 65-73 (2018).
- [5] V. Volman, Y. Zhu, A.-R. O. Raji, B. Genorio, W. Lu, C. Xiang, C. Kittrell, J. M. Tour, ACS Appl. Mater. Interfaces 6, 298-304 (2014).
- [6] J. Luo, H. Lu, Q. Zhang, Y. Yao, M. Chen, Q. Li, Carbon 110, 343-349 (2016).
- [7] D.-J. Kwak, B.-H. Moon, D.-K. Lee, C.-S. Park, Y.-M. Sung, J. Elec. Eng. Technol. 6 (5), 684-687 (2011).
- [8] R. A. Afre, N. Sharma, M. Sharon, M. Sharon, Rev. Adv. Mater. Sci. 53, 79-89 (2018).
- [9] L. Yu, C. Shearer, J. Shapter, Chem. Rev. 116, 13413-13453 (2016).
- [10] F. Mirri, A. W. K. Ma, T. T. Hsu, N. Behabtu, S. L. Eichmann, C. C. Young, D. E. Tsentalovich, M. Pasquali, ACS Nano 6 (11), 9737-9744 (2011).
- [11] D.-Y. Cho, K. Eun, S.-H. Choa, H.-K. Kim, Carbon 66, 530-538 (2014).
- [12] Y. Meng, X.-B. Xu, H. Li, Y. Wang, E.-X. Ding, Z.-C. Zhang, H.-Z. Geng, Carbon 70, 103-110 (2104).
- [13] H.-S. Jang, S.-K. Jeon, S.-H. Nahm, Carbon 49, 111-116 (2011).
- [14] V. H. Pham, T. V. Cuong, S. H. Hur, E. W. Shin, J. S. Kim, J. S, Chung, E. J. Kim, Carbon 48, 1945-1951 (2010).
- [15] Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel, M. Nikolou, K. Kamaras, J. R. Reynolds, D. B. Tanner, A. F. Hebard, A. G. Rinzler, Science 305 (5688), 1273-1276 (2018).
- [16] S. Pei, J. Du, Y. Zeng, C. Liu, H.-M. Cheng, Nanotechnology 20, 235707 (2009).
- [17] D. Jung, M. Han, J. Vac. Sci. Technol. B 32, 04E105 (2014).
- [18] D. M. Pozar, Microwave Engineering, Wiley (2011).
- [19] D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, Y. Chen, Small 7, 3186-3192 (2011).
Uwagi
EN
1. This work was supported by DAPA and ADD.
PL
2. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d43e9578-1c76-49f5-8d42-203d9037d738