

Applied Computer Science, vol. 17, no. 4, pp. 100–109

doi: 10.23743/acs-2021-32

100

Submitted: 2021-07-12 | Revised: 2021-08-14 | Accepted: 2021-09-20

computer clusters, parallel computing, n-body problem

Tomasz NOWICKI [0000-0003-0752-2509]*,

Adam GREGOSIEWICZ [0000-0002-6702-8505]**,

Zbigniew ŁAGODOWSKI [0000-0003-1811-6151]**

PRODUCTIVITY OF A LOW-BUDGET COMPUTER

CLUSTER APPLIED TO OVERCOME THE N-BODY

PROBLEM

Abstract

The classical n-body problem in physics addresses the prediction of individual motions

of a group of celestial bodies under gravitational forces and has been studied since

Isaac Newton formulated his laws. Nowadays the n-body problem has been recognized

in many more fields of science and engineering. Each problem of mutual interaction

between objects forming a dynamic group is called as the n-body problem. The cost of

the direct algorithm for the problem is O(n2) and is not acceptable from the practical
point of view. For this reason cheaper algorithms have been developed successfully

reducing the cost to O(nln(n)) or even O(n). Because further improvement of the

algorithms is unlikely to happen it is the hardware solutions which can still accelerate

the calculations. The obvious answer here is a computer cluster that can preform the

calculations in parallel. This paper focuses on the performance of a low-budget

computer cluster created on ad hoc basis applied to n-body problem calculation.

In order to maintain engineering valuable results a real technical issue was selected to

study. It was Discrete Vortex Method that is used for simulating air flows. The pre-

sented research included writing original computer code, building a computer cluster,

preforming simulations and comparing the results.

1. INTRODUCTION

The n-body problem arises occasionally in physics and thus also in engineering.
The prerequisite for its emergence is (1) description of a physical phenomenon by means of

a dynamic and discrete set of particles, which (2) influence mutually in the relationship “each

with everyone”. Computer modelling of physical phenomena in this way is simple and so

attractive from an engineering point of view. However, the simplicity and purity of the
method carries time–consuming calculations resulted from the necessity of recalculating all

the mutual interactions at every step of the simulation. Engineers who applies n-body particle

* Lublin University of Technology, Faculty of Electrical Engineering and Computer Science,
Department of Computer Science, Poland, t.nowicki@pollub.pl
** Lublin University of Technology, Faculty of Electrical Engineering and Computer Science,
Department of Mathematics, Poland, a.gregosiewicz@pollub.pl, z.lagodowski@pollub.pl

http://www.acs.pollub.pl/pdf/v17n4/8.pdf
https://orcid.org/0000-0003-0752-2509
https://orcid.org/0000-0002-6702-8505
https://orcid.org/0000-0003-1811-6151

101

models in their practice always face the challenge of time-intensive computer calculation.

It also should be noted that various particle models and methods (those in which the n-body

problem occurs) are always accompanied by other additional complications that forms the

individual computational specificity of them. Research presented in this article focuses on
Discrete Vortex Method (DVM). The authors tried to answer the question what the effi-

ciency of low-budget computer clusters can be when applied to DVM simulations.

1.1. The generalized n-body problem

Firstly, the n-body problem is going to be formulated in the simplest and general way

(Fig. 1). For this purpose one should:

 define a metric space with a metric d and supply it with time t,

 spread at t = 0 a finite set of particles (called a discrete population or a discrete system)

numbered i = 1, 2, 3, …, n in the space by determining their initial positions Pi and

velocities ui,

 abstract one common attribute of the particles, which intensity C determines the

strength of mutual influence,

 chose a mutual influence function Q, which lets calculate influence from the particle

j on i Qij = Q(Ci, Cj, dij),

 choose a velocity function u which lets calculate change in the velocity of the particle

i Δui = u(ui, Ci, Q1, Q2, Q3, …, Qn),

 choose a displacement function D, which lets calculate the change in a particle

position after time Δt: Δdi = D(ui, Ci, Δt),

 let the particles change their positions with time.

Fig. 1. A four-element discrete population (n = 4) in the “each to everyone” relation: a) the initial

configuration, b) the change under mutual interactions; the description: i = 1, 2 ,3, 4 – particle numbers,

Ci – the intensity of a attribute , Pi Pi’ – the location in the space (before and after the change),
ui ui’ – velocity, Qij – the influence on particle i from j, Δdi – the location change

102

Such a discrete population constantly reconfigures itself as time runs. All the particles

continually influence each other and move in the space due to the influence. The movement

results in a change of the mutual influences. The population equilibrium may or may not be

achieved. Such a “numeric ecosystem” has the ability to reproduce a real phenomenon if
constructed and interpreted in a correct way.

The n-body problem is considered resolved when is known the configuration of the

population (positions and velocities of all the particles) at any time t > 0. It turns out that the
n-body problem has in general no analytical solution. Subsequent configurations of the

population may be determined only by direct simulations. There are three main groups of

algorithms for n-body problem (Hockney & Eastwood, 1988): 1) particle-particle (P2),
2) particle-mesh (PM) and 3) particle-particle-particle-mesh (P3M). The P2 algorithm is the

simplest one and consists in calculating all single interactions in a direct way. It results in

the numerical cost of O(n2), which is usually unacceptable in engineering practice. The PM

algorithm employs a calculating mesh, which let reduce the cost to O(n) but also decreases
accuracy of the results because small-scale local effects are not able to develop. The last

P3M algorithm is a combination of the previous two. For each particle a direct neighbour-

hood area is established within which the P2 algorithm is used to calculate the influence from
other particles from the neighbourhood. The influence from the remote particles are

determined using the P3M algorithm. The numerical cost of the last algorithm is O(n·ln(n)).

It is most frequently implemented and was used in the presented research.

1.2. The Discrete Vortex Method

The Discrete Vortex Method (DVM) (Lewis, 1991; Cottet & Koumoutsakos, 2000)
is one of methods dedicated to computer simulating of turbulent fluid flows. The method

was originated in the thirties of the twentieth century and has been applied successfully to

fluid mechanics since then (Fig. 2).

Fig. 2. Turbulent air flow over a cylinder with correctly developed vortex street
as an example of DVM in action (Nowicki, 2012)

DVM is a numerical method developed for solving the Navier-Stokes equation (N-S)

based on the Lagrangian model of a particle tracing. In DVM, the equation is solved by

a direct computer simulation of a physical phenomena. A finite mesh known from finite
element or finite volume methods is not applied in DVM. Artificial models of turbulence

such as LES or k-ε are also not used. The most valuable feature of the method is its self-

adaptability to geometry of computational task (Nowicki, 2015) and numeric stability.
The biggest drawback of DVM is time consuming simulations come from the n-body

problem.

103

Considering 2D euclidean areas of fluid flow and assuming a homogeneous dry air with

a constant density, the following form of the N-S equation can be used to describe the

phenomenon under interest:

𝜕𝑢

𝜕𝑡
+ (𝑢𝛻)𝑢 = −

1

𝜌
𝛻𝑝 + 𝜈𝛻2𝑢 (1)

where: 𝑢 – velocity field,
(𝑢𝛻)– operator of the material derivative,

𝑝 – pressure field,

𝜌 – density of air,

𝜈 – kinematic viscosity of air,

𝑡 – time.

Eq. (1) can be decomposed by calculating the rotation of the vector u, which gives the so-
called vorticity transport equation:

𝜕𝜔

𝜕𝑡
+ (𝑢𝛻)𝜔 = 𝜈𝛻2𝜔 (2)

where: 𝜔 = 𝛻 × 𝑢 – vorticity field of the flow (treated as scalar for 2D flows).

The last eq. (2) is composed of two components: advection (3) and diffusion (4):

𝜕𝜔

𝜕𝑡
+ (𝑢𝛻)𝜔 = 0 (3)

𝜕𝜔

𝜕𝑡
= 𝜈𝛻2𝜔 (4)

The separation (known as Split Algorithm) lets us treat the fluid flow as two simultaneous
and independent phenomena: advection and diffusion, wherein only advection eq. (3)

describes the vortex kinematics that leads to the n-body problem.

In DVM the computational particle is a discrete vortex. The abstracted attribute of the

particle is its vorticity traditionally denoted by the letter 𝛤. The vorticity equals the value of
circulation of velocity field over a contour (with element dr) of an area from which the

vorticity is reduced to a single point:

 𝐶 = 𝛤 = ∮ 𝑢
𝐿

𝑑𝑟 (5)

The mutual influence function Q from particle j on i is given by a formula:

 𝑄𝑖𝑗 = 𝛤𝑗 ⋅ 𝐾 × 𝑑𝑖𝑗 (6)

where: 𝑑𝑖𝑗 = 𝑃𝑗 − 𝑃𝑖- distance between vortexes as the metrics,

𝐾 – kernel articulating inverse-square law.

104

Since the influence function in DVM describes velocity field, there is no need to introduce

an extra velocity function and:

 𝑢𝑖 = ∑ 𝑄𝑖𝑗𝑗=1,2,3,...,𝑛∧𝑖≠𝑗 (6)

After the short glimpse of DVM given above it should be clear that the method incorporates

the n-problem method.

1.3. Literature review

The results presented in this paper concern a numerical experiment carried out in 2007

(Nowicki, 2007). The aim of that experiment was to determine the performance of a low-
cost computer cluster dedicated to DVM simulations. At the time, the method was in its early

stage of development and such data was lacking. Today in 2021 the method can be still

characterized as academic one because neither commercial nor open source software has

been released yet. The interest of the method has not stopped as well, but its development is
rather slow. In the period of 2007–2012 several hundred scientific papers on the subject have

been published. About 300 can be found in the Scopus database, 100 in SpringerLink and

200 in ScienceDirect. The majority of published works concerns engineering applications of
DVM or improving its accuracy. The problem of accelerating calculations appears extremely

rarely and relates to modification of DVM algorithms rather than parallelization of

calculations. And so, for example, Ricciardi, Wolf & Bimbato, 2017 studied the combination
of exponential and power series expansions implemented using a divide and conquer strategy

to accelerate the calculation while two years earlier he proposed fast multipole method

algorithm to accelerate the expensive interactions of the discrete vortices (Ricciardi et al.,

2015). The results of analysis on possibility of using fast matrix multiplication methods for
the approximation of the velocity field when solving the system of differential equations

describing the vorticity transport in an ideal incompressible fluid in Lagrangian coordinates

can be found at Aparinov & Setukha (2009). Whereas Dynnikova (2009) explored the
construction of a hierarchical structure of regions (tree) in order to accelerate the calculations.

A different approach represents Huang, Su & Chen (2009), who introduced a concept of

residual circulation in that sense that only a partial circulation of the vortex sheet is diffused
into the flow field. The cited examples show that accelerating calculations with hardware

methods has not been of interest to the researchers. Only Kuzima, Marchevsky & Moreva

(2015) studied the speed-up in DVM calculations on multicore (using MPI and OpenMP)

and graphic workstation (CUDA). She reported acceleration in calculations up to 40 times.
On the other hand the interest in the classic n-body problem itself has not stopped. Despite

the fact that today it is a well-recognized problem novel simulations are being preformed

(e.g. Groen, Zwart, Ishiyama & Makino, 2011) and new software is being developed
(e.g. Incardona, Leo, Zaluzhny, Ramaswamy & Sbalzarini, 2019).

Taking into account the above information any practical study on usage of computer

clusters in the DVM should be in the field of interest of so called theoretical engineers.

It happens very often that small research groups (at universities or in start-ups) ask themselves
if it is worth to invest their time in building a computer cluster and creating parallel solvers

in order to speed up calculations. The aim of this paper is to facilitate the answer to such

questions in the case of Discrete Vortex Method. In this respect, the presented results remain
still valid.

105

2. THE COMPUTER EXPERIMENT

The experiment was carried out in 2007 in a computer laboratory at Lublin University of

Technology. The laboratory was equipped with 12 single-processor PCs connected with Fast
Ethernet network. All the computers had the AMD Atlon XP 1600+ 1.6GHz processor and

256MB RAM. The cluster was a symmetric one and was build according to Soan 2005.

The Ubuntu Linux 6.10 was used as an operating system and the Mpich 2.0 as a communi-
cation layer. As a part of the experiment, three original DVM solvers were developed (see

Suplement): vorsym_s, vorsym_q and vorsym-p. The program vorsym_s (vortex simulator

slow) is a single-process and single-threaded program which implements the PP algorithm.

The vorsym_q (quick) is also a single-process and single-threaded program but it implements
the P3M algorithm. Whereas the vorsym_p (parallel) solver is a multi-process (but still

single-threaded) solver implementing the P3M algorithm. The last program was run on the

computer cluster using 4 or 9 nodes of it. (The number of nodes has been added in round
brackets.) From the engineering point of view, the most important thing was to compare the

execution time of calculations between vorsym_q along with vorsym_p(4) and vorsym_p(9).

 Tab. 1. The set of data used to perform the simulations

No. File Vortexes Size No. File Vortexes Size

1 9.vrt 9 14 MiB 18 30k.vrt 29 929 45 GiB

2 25.vrt 25 38 MiB 19 40k.vrt 40 000 60 GiB

3 36.vrt 36 55 MiB 20 50k.vrt 49 729 74 GiB

4 49.vrt 49 75 MiB 21 60k.vrt 59 536 89 GiB

5 81.vrt 81 124 MiB 22 70k.vrt 69 696 104 GiB

6 100.vrt 100 153 MiB 23 80k.vrt 79 945 119 GiB

7 200.vrt 196 299 MiB 24 90k.vrt 90 000 134 GiB

8 300.vrt 289 441 MiB 25 100k.vrt 100 489 150 GiB

9 400.vrt 400 610 MiB 26 200k.vrt 200 704 299 GiB

10 500.vrt 484 739 MiB 27 300k.vrt 299 209 446 GiB

11 600.vrt 576 879 MiB 28 400k.vrt 399 424 595 GiB

12 700.vrt 676 1032 MiB 29 500k.vrt 499 849 745 GiB

13 800.vrt 784 1196 MiB 30 600k.vrt 600 625 895 GiB

14 900.vrt 900 1373 MiB 31 700k.vrt 700 569 1044 GiB

15 1k.vrt 1024 1563 MiB 32 800k.vrt 801 025 1194 GiB

16 10k.vrt 10 000 15 GiB 33 900k.vrt 900 601 1345 GiB

17 20k.vrt 19 881 30 GiB 34 1M.vrt 1 000 000 1.5 TiB

For the experiment 34 numerical samples were generated. They were files defining the

initial conditions of the n-body DVM tasks. The samples differed in the number of vortex

particles (Tab. 1). In each case the size of the computational space (domain) was of the same

size of 100×100. Initially the vortexes were randomly and evenly distributed in the domain.

The random Marsagil generator was used. The vortexes had also random strengths from

–1.0 to 1.0. All the initial velocities were zero. All simulations were carried out with
a constant step time equals to 0.01. The number of vortices in the domain was fixed. Vortices

that crossed the domain boundary making their moves were returned to the domain from the

opposite edge in such way that they continued their movement on the opposite side.

The column Size gives the sizes of the output files for a 100 000 step simulation for each case.

106

3. RESULTS

The main aim of the simulations was to test the efficiency of the developed computational

system considered as the computer cluster and dedicated solver vorsym_p. The simulations
were carried out for all prepared files (Tab. 1). Depending on the size of a task a single

simulation took form 3 to 10 000 steps due to time constraints. In order to normalize the

obtained results, the average execution time of a single step was calculated. Results has been
presented in a table (Tab. 2) and in a diagram (Fig. 3). The specimen numbers from Tab. 1.

agrees with numbers from Tab. 2. Simulations for the specimens number form 22 to 34 were

not performed with vorsym_s due to too long calculating times. Additionally, for the for

vorsym_q and vorsym_p simulators number of computing subdomains were given. The
subdomains were formed by dividing the square main domain to, also square, areas. The

sides of the main domain were divided as follow: 2×2, 3×3, 4×4, …, 19×19, which resulted

in 4, 9, 16, …, 361 subdomains respectively. They determined the calculating mesh of the

P3M algorithm. For the parallel vorsym_p solver firstly the main domain was divided into

subdomains of distinct processes (4 or 9) then each process created its own subdomains

according to the previously described rule.
A typical engineering problem solved using DVM requires at least tens of thousands

discrete vortexes and performing about 100 000 simulation steps. Approximate times of

completing such tasks were estimated on the basis of results from Tab. 2 and presented in
Tab. 3. The results were valid in 2007 (for hardware reasons) but still clearly show

significant reduction of computational time when a computer cluster is used for DVM.

Whereas relative speed-ups of calculations presented on a diagram in the Fig. 4 has not
outdated at all. It was noticed that 4 node cluster speeded up simulation 8 times and 9 node

cluster – 22 times! The results are dubious but absolutely correct. So why did cooperation

of n nodes caused acceleration greater than n times? The answer is the large amount of data

generated at each calculating step and written into files. In the case of n nodes there were n
different files on different hard dives instead of one big file on a single drive, which

shortened the execution time of each step. Each node wrote only its own data. It was the

amount of output data along with the specificity of n–body problem what determined the
time of simulations. It is also the reason why obtained results does not correspond with those

found in Kuzmina et al. (2015) where for small number of calculating cores linear

acceleration was observed. Simply, the simulation time did not include data recording to
files at each step of the simulation. This can not be avoided in engineering practice, which

makes low-budget cluster very effective while deployed in DVM calculations. Such

observation is very important to an engineer who has a task to shorten the time of DVM

simulations as much as possible.

107

 Tab. 2. Averaged time of performing a single simulation step for each file

N
o
.

vorsym_s vorsym_q vorsym_p (4) vorsym_p (9)

T [s] Nsub T [s] Nsub T [s] Nsub T [s]

1 0.00015 1 0.00029 1 0.00660 1 0.04860

2 0.00042 4 0.00072 1 0.00660 1 0.08000

3 0.00066 4 0.00091 1 0.00650 1 0.05000

4 0.00108 4 0.00111 4 0.00800 1 0.04900

5 0.00190 9 0.00146 4 0.00804 1 0.04800

6 0.00276 9 0.00158 4 0.00800 1 0.04600

7 0.01060 9 0.00280 4 0.01005 4 0.06670

8 0.02260 9 0.00490 4 0.01001 4 0.08230

9 0.04340 16 0.00803 9 0.01030 4 0.10076

10 0.06400 16 0.01100 9 0.01502 4 0.08330

11 0.09100 16 0.01403 9 0.01510 4 0.06000

12 0.14500 16 0.01900 9 0.01511 4 0.10040

13 0.16700 16 0.02201 9 0.01512 9 0.10108

14 0.21800 25 0.02700 9 0.01540 9 0.10204

15 0.30082 25 0.03012 9 0.01750 9 0.10160

16 27.1 64 0.9 36 0.3 25 0.1

17 106.3 100 2.7 49 0.8 36 0.5

18 241.7 121 5.1 64 1.0 36 0.7

19 432.0 144 7.8 64 1.3 49 1.0

20 685.0 144 10.7 81 1.7 49 1.3

21 952.0 169 14.3 81 2.0 64 1.3

22 - 169 18.1 100 2.7 64 1.7

23 - 196 21.7 100 3.0 64 2.0

24 - 225 27.0 100 3.5 64 2.3

25 - 225 30.7 121 4.3 81 2.7

26 - 324 89 169 12 100 5

27 - 400 159 196 23 121 9

28 - 441 245 225 32 144 13

29 - 484 341 256 44 169 17

30 - 529 452 289 57 196 22

31 - 576 547 289 73 196 27

32 - 625 697 324 87 225 33

33 - 625 829 324 104 225 38

34 - 279 994 361 122 225 44

 Tab. 3. Estimated time of completing a 100 000 step DVM simulation

Solver
Number of vortexes in the simulation

20 000 50 000 100 000

vorsym_s 4 months 2 years 9 years

vorsym_q 3 days 12 days 36 days

vorsym_p(4) 22 hours 2 days 5 days

vorsym_p(9) 14 hours 1½ day 3 days

108

Obtained results may seem outdated nowadays due to the development in computer

hardware since 2007. It is evident that in 2021 the simulations, if recreated would be

completed in much shorter times even using the same computer code. It would be simply

achieved by using faster CPUs and hard disc drives. That said, it is also evident that the new
hardware nowadays could be used for bigger problems. In other words the discussion today

would consider bigger task. Since the nature of the n-body problem has not changed it is still

the writing of the output to hard discs which delays calculations significantly. What could
improve the performance in this area is using multicore CPUs, which let delegate the writing

tasks to a separate threads. It should be undoubtedly the first idea to be explored. Another

way to overcome the problem of time-consuming n-body simulations could be using the
GPUs technology that is much more affordable now, though this question is beyond the

scope of this paper.

Fig. 3. Averaged time of performing a calculation step against the size of a task
for different calculation methods

Fig. 4. Relative speedup of simulation (WRT abbr “with relation to”)

109

4. CONCLUSIONS

In this paper results on the possibility of accelerating the Discrete Vortex Method

computer simulations were presented. A low-budget computer cluster was build and a parallel
solver was developed. Obtained acceleration of calculations exceeded the number of the

cluster nodes due to division of the computing domain and separation of the output files.

The paper deals with issues rarely described in the literature on the discrete vortex method.

Supplement

https://github.com/TomekNowicki/vorsym

REFERENCES

Aparinov, A. A., & Setukha, A. V. (2009). On the application of mosaic-skeleton approximations of matrices for
the acceleration of computations in the vortex method for the three-dimensional Euler equations.
Differential Equations, 45, 1358. http://doi.org/10.1134/S0012266109090110

Cottet, G. H., & Koumoutsakos, P. D. (2000). Vortex Methods Theory and Practice. Cambridge University Press.
Dynnikova, G. Ya. (2009). Fast technique for solving the N-body problem in flow simulation by vortex methods.

Computational Mathematics and Mathematical Physics, 49, 1389–1396. http://doi.org/10.1134/

S0965542509080090
Groen, D., Zwart, S. P., Ishiyama, T., & Makino, J. (2011). High Performance Gravitational N-body Simulations

on a Planet-wide Distributed Supercomputer. Computational Science & Discovery, 4(1), 015001.
http://doi.org/10.1088/1749-4699/4/1/015001

Hockney, R. W., & Eastwood, J. W. (1988). Computer Simulation Using Particles. Taylor & Francis Group.
Huang, M. J., Su, H. X., & Chen, L. Ch. (2009). A fast resurrected core-spreading vortex method with no-slip

boundary conditions. Journal of Computational Physics, 228(6), 1916–1931. https://doi.org/10.1016/
j.jcp.2008.11.026

Incardona, P., Leo, A., Zaluzhny, Y., Ramaswamy, R., & Sbalzarini, I. F. (2019). OpenFPM: A scalable open
framework for particle and particle-mesh codes on parallel computers. Computer Physics
Communications, 241, 155–177. https://doi.org/10.1016/j.cpc.2019.03.007

Kuzmina, K., Marchevsky, I., & Moreva, V. (2015). Parallel Implementation of Vortex Element Method on
CPUs and GPUs. Procedia Computer Science, 66, 73–82. https://doi.org/10.1016/j.procs.2015.11.010

Lewis, R. I. (1991). Vortex Element Methods for Fluid Dynamics of Engineering Systems. Cambridge University
Press.

Nowicki, T. (2007). Algorytm równoległy dla problemu n-ciał (Unpublished master thesis). Lublin University of

Technology, Lublin. https://github.com/TomekNowicki/vorsym/blob/main/nowicki_n-body.pdf
Nowicki, T. (2012). Wpływ sposobu realizacji warunków brzegowych w metodzie wirów dyskretnych na

odpowiedź aeroelastyczną pomostów. Politechnika Lubelska.
Nowicki, T. (2015). The Discrete Vortex Method for estimating how surface roughness affects aerodynamic drag

acting on a long cylinder exposed to wind. Technical Transactions, Civil Engineering, 2-B(12), 127–144.
https://doi.org/10.4467/2353737XCT.15.129.4166

Ricciardi, T. R., Wolf, W. R., & Bimbato, A. M. (2017). A fast algorithm for simulation of periodic flows using
discrete vortex particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39,
4555–4570. http://doi.org/10.1007/s40430-017-0902-x

Ricciardi, T., R., Bimbato, A. M., Wolf, W., R., Idelsohn, S. R., Sonzogni, V., Coutinho, A., Cruchaga, M., Lew,
A., & Cerrolaza, M. (2015). Numerical simulation of vortex interactions using a fast multipole discrete
particle method. Proceedings Of The 1st Pan-american Congress On Computational Mechanics And Xi
Argentine Congress On Computational Mechanics (pp. 1065–1076). Barcelona: Int Center Numerical
Methods Engineering.

https://github.com/TomekNowicki/vorsym
http://doi.org/10.1007/s40430-017-0902-x

