PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Influence of process of straightening ship hull structure made of 316L stainless steel on corrosion resistance and mechanical properties

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The AISI 316L type steel belongs to the group of chromium-nickel stainless steels. They are determined according to European standards as X2CrNiMo17-12-2 and belong to the group of austenitic stainless steels. Steels of this group are used for elements working in seawater environments, for installations in the chemical, paper, and food, industries, for architectural elements, and many others. The chemical composition of corrosion-resistant austenitic steels provides them with an austenite structure that is stable in a wide temperature range, under appropriate conditions for heating, soaking, and cooling. 316L steel plate was subjected to a technological treatment of hot straightening with an oxyacetylene torch, which is not commonly used for this type of steel, mainly due to the lack of objective assessment of whether the austenitizing temperature has been achieved and the stability of the heat treatment process is ensured. The single-phase structure of austenite with high corrosion resistance, without precipitation of carbides, steel is obtained by supersaturation in water from 1100°C. The purpose of the presented research was to determine the usefulness of the flame straightening process for a ship structure made of 316L steel.
Rocznik
Tom
Strony
103--111
Opis fizyczny
Bibliogr. 21 poz., rys., tab.
Twórcy
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • CRIST S.A., Czechosłowacka 3, 81-336 Gdynia, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
  • Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
Bibliografia
  • 1. ASTM. (2003): ASTM G48–03, Standard Test Methods for Pitting and Crevice Corrosion Resistance of Stainless Steels and Related Alloys by Use of Ferric Chloride Solution. ASTM International, West Conshohocken.
  • 2. Dobrzański L. (2004): Metal Engineering Materials. WNT, Warsaw.
  • 3. Hu C. Y., Wan X. L., Wu K. M., Xu D. M., Li G. Q., Xu G., Misra R. D. K. (2020): On the Impacts of Grain Refinement and Strain-Induced Deformation on Three-Body Abrasive Wear Responses of 18Cr–8Ni Austenitic Stainless Steel. Wear, Vol. 446/447 (December 2019). https://doi.org/10.1016/j. wear.2019.203181
  • 4. ISO. (1998): ISO 3651-2:1998Determination of Resistance to Intergranular Corrosion of Stainless Steels – Part 2: Ferritic, Austenitic and Ferritic-Austenitic (Duplex) Stainless Steels – Corrosion Test in Media Containing Sulphuric Acid. 2nd Edition, Geneva.
  • 5. ISO. (2003): ISO 17639:2003 Destructive Tests on Welds in Metallic Materials – Macroscopic and Microscopic Examination of Welds. Geneva.
  • 6. ISO. (2005): ISO 6507-1:2005 Metallic Materials – Vickers Hardness Test – Part 1: Test Method. Geneva.
  • 7. ISO. (2012): ISO 4136:2012 – Destructive Tests on Welds in Metallic Materials – Transverse Tensile Test. ISO, Geneva.
  • 8. ISO. (2014): ISO 6506-1:2014 Metallic Materials – Brinell Hardness Test – Part 1: Test Method. Geneva.
  • 9. ISO. (2016): ISO 148-1:2016 Metallic Materials – Charpy Pendulum Impact Test – Part 1: Test Method. Geneva.
  • 10. ISO. (2016): ISO 6892-1:2016 Metallic Materials – Tensile Testing – Part 1: Method of Test at Room Temperature. Geneva.
  • 11. ISO. (2017): ISO 15614-1:2017 Specification and Qualification of Welding Procedures for Metallic Materials – Welding Procedure Test – Part 1: Arc and Gas Welding of Steels and Arc Welding of Nickel and Nickel Alloys. Geneva.
  • 12. Jakubowski M. Corrosion Fatigue Crack Propagation Rate Characteristics for Weldable Ship and Offshore Influence of Loading Frequency and Saltw. Polish Maritime Research. 2017, Volume 24: Issue 1 DOI: https://doi.org/10.1515/ pomr-2017-0011.
  • 13. Kozak J., Tarelko W. Case study of masts damage of the sail training vessel POGORIA. Engineering Failure Analysis. 2011, Tomy Volume 18, Issue 3, Pages 819-827, https:// doi.org/10.1016/j.engfailanal.2010.11.016.
  • 14. Łabanowski J., Jurkowski M., Fydrych D., Rogalski G. (2017): Durability of Welded Water Supply Pipelines Made of Austenitic Steels. Przegląd Spawalnictwa, Vol. 89. https:// doi.org/10.26628/wtr.v89i8.801.
  • 15. PKN. (2003): PN-EN 10088-1:1998/Ap 2003, Stale Odporne Na Korozję – Część 1: Wykaz Stali Odpornych Na Korozję. PKN, Warsaw.
  • 16. Singh S., Andersson J. (2016): Review of Hot Cracking Phenomena in Austenitic Stainless Steels. 7th International Swedish Production Symposium.
  • 17. Singh S., Hurtig K., Andersson J. (2018): Investigation on Effect of Welding Parameters on Solidification Cracking of Austenitic Stainless Steel 314. Procedia Manufacturing, Vol. 25, 351–357. https://doi.org/10.1016/j. promfg.2018.06.103.
  • 18. Tsouli S., Lekatou A. G., Nikolaidis C., Kleftakis, S. (2019): Corrosion and Tensile Behavior of 316L Stainless Steel Concrete Reinforcement in Harsh Environments Containing a Corrosion Inhibitor. Procedia Structural Integrity, Vol. 17, 268–275. https://doi.org/10.1016/j.prostr.2019.08.036.
  • 19. Xu D. M., Li G. Q., Wan X. L., Misra R. D. K., Yu J. X., Xu G. (2020): On the Deformation Mechanism of Austenitic Stainless Steel at Elevated Temperatures: A Critical Analysis of Fine-Grained versus Coarse-Grained Structure. Materials Science and Engineering A, Vol. 773. https://doi. org/10.1016/j.msea.2019.138722.
  • 20. Yari M. (2017): An Intro to Pipeline Corrosion in Seawater. Corrosionpedia Vol. 2, 1432. https://www.corrosionpedia. com/2/1432/corrosion-101/an-intro-to-pipelinecorrosion-in-seawater (accessed: 29 April 2020)
  • 21. Yin F., Yang L., Wang M., Zong L., Chang X. (2019): Study on Ultra-Low Cycle Fatigue Behavior of Austenitic Stainless Steel. Thin-Walled Structures. Vol. 143, 106205. https:// doi.org/10.1016/j.tws.2019.106205.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d430715e-7ca6-4ad6-b349-408ada45770c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.