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ON b -VERTEX AND b -EDGE CRITICAL GRAPHS

Noureddine Ikhlef Eschouf and Mostafa Blidia

Communicated by Mariusz Meszka

Abstract. A b-coloring is a coloring of the vertices of a graph such that each color class
contains a vertex that has a neighbor in all other color classes, and the b-chromatic number
b(G) of a graph G is the largest integer k such that G admits a b-coloring with k colors.
A simple graph G is called b+-vertex (edge) critical if the removal of any vertex (edge) of
G increases its b-chromatic number. In this note, we explain some properties in b+-vertex
(edge) critical graphs, and we conclude with two open problems.
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1. INTRODUCTION

A proper coloring of a simple graph G is an assignment of colors to the vertices of G
such that no two adjacent vertices have the same color. The chromatic number of G
is the minimum integer χ(G) such that G has a proper coloring with χ(G) colors.

A b-coloring of a graph G by k colors is a proper coloring of the vertices of G
such that in each color class there exists a vertex having neighbors in all the other
k− 1 colors classes. We call any such vertex a b-vertex. The b-chromatic number b(G)
of a graph G is the largest integer such that G admits a b-coloring with k colors.
The concept of b-coloring has been introduced by R.W. Irving and D.F. Manlove
([14, 21]). They proved that determining b(G) is NP -hard for general graphs, even
when it is restricted to the class of bipartite graphs ([20]), but it is polynomial for
trees ([14, 21]). The NP -completeness results have incited researchers to establish
bounds on the b-chromatic number in general or to find its exact values for subclasses
of graphs (see [2, 3, 6–8,10,12,15,18–20,22,23]).

The b-chromatic number of a graph G may increase, decrease or remain unchanged
when G is modified by removing a vertex or an edge. In this context, Ikhlef Eschouf
([13]) and Blidia et al. ([5]) have characterized the class of P4-sparse graphs, quasi-line
graphs, P5-free graphs and d-regular graphs for which b(G−e) < b(G) holds for every
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edge e in G. They also proved that deciding if a graph is in this class is NP-hard
for general graphs ([5]), even when it is restricted to the subclass of P5-free graphs
formed by the graphs that are the union of two split graphs. The same authors [4]
have recently characterized trees for which b(G − v) < b(G) holds for each vertex v
in G ([4]). The focus of this paper involves studying the graphs in which removing of
any vertex (edge) of G increases its b-chromatic number.

In the remainder of this section, we introduce some definitions and notation.
Consider a graph G = (V,E). For any A ⊂ V , let G[A] denote the subgraph
of G induced by A. For any vertex v of G, the neighborhood of v is the set
NG(v) = {u ∈ V (G) | (u, v) ∈ E} (or N(v) if there is no confusion), and the closed
neighborhood of v is the set NG[v] = NG(v) ∪ {v}. Let ∆(G) (respectively, δ(G) be
the maximum (respectively, minimum) degree in G. Let ω(G) denote the size of a
maximum clique of G. If G and H are two vertex-disjoint graphs, the union of G and
H is the graph G+H whose vertex-set is V (G)∪V (H) and edge-set is E(G)∪E(H).
For an integer p ≥ 2, the union of p copies of a graph G is denoted pG. The join of
graphs G and H is the graph denoted G∨H obtained from G+H by adding all edges
between G and H. The join of k ≥ 2 copies of H is the graph G = H ∨H ∨ . . . . ∨H
obtained by taking k copies of H, and adding all edges between any two different
copies. In case k = 1, G = H. The cartesian product of two graphs G and H denoted
by G�H, is a simple graph with V (G) × V (H) as its vertex set and two vertices
(u1, v1) and (u2, v2) are adjacent in G�H if and only if either u1 = u2 and v1, v2 are
adjacent in H, or u1, u2 are adjacent in G and v1 = v2. The girth g(G) of G is the
length of a shortest cycle in G. For further terminology on graphs we refer to the
book by Berge [1].

Definition 1.1. A graph is said to be b+-vertex critical if b(G− v) > b(G) holds for
every vertex v in G, and is said to be b+-edge critical if b(G − e) > b(G) holds for
every edge e in G

In this paper, we describe some particular graphs that are b+-vertex (edge) critical,
and we mention some other graphs that are not in such classes. We conclude the paper
by posing two open problems.

We now present some known results which will be used in the rest of the paper.

2. SOME KNOWN RESULTS

It is known that every graph G satisfies

ω(G) ≤ b(G) ≤ ∆(G) + 1. (2.1)

The following theorem is proven by Jakovac and Klavzar in [15]. They showed that,
except for four simple graphs, the b-chromatic number of connected cubic graph is 4.
Let P, F1, F2 and K3,3 be the graphs depicted in the Figure 1.

Theorem 2.1 ([15]). Let G be a connected cubic graph. Then b(G) = 4 unless G is
P , F1, F2 or K3,3. In these cases, b(P ) = b(F1) = b(F2) = 3 and b(K3,3) = 2.
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Fig. 1. Cubic graphs whose b-chromatic number is less than 4

The next result was established in [12].

Lemma 2.2 ([12]). Let G1, G2 be two vertex-disjoint graphs. Then the join G1 ∨G2

has b(G1 ∨G2) = b(G1) + b(G2).

The following result on graphs of girth greater than 5 was proved in [17].

Proposition 2.3 ([17]). Let G be a graph with girth at least 6. Then b(G) ≥ δ(G).
Moreover, if G is d-regular, then b(G) = d+ 1.

The b-chromatic number of the cartesian product of some graphs was studied in
[16, 18]. In particular, R. Javadi and B. Omoomi [16] showed that the b-chromatic
number of K3�K3 is equal to 3.

Proposition 2.4 ([16]). b(K3�K3) = 3.

3. REMOVING VERTEX

In this section we look at the effect of vertex removal on the b-chromatic number of
a graph. More precisely, we are interested in graphs for which removing of any vertex
increase the b-chromatic number. We first give some properties of b+-vertex critical
graphs, and as consequence, we conclude that graphs with girth at least 6, chordal
graphs and connected cubic graphs are not b+-vertex critical. However, we prove that
the join of two b+-vertex critical graphs is b+-vertex critical; in particular, we show
that K3�K3 and the join of k ≥ 1 copies of K3�K3 are b+-vertex critical graphs.

Recall that a graph G is chordal ([11, 24]) if every cycle of length at least four in
G has a chord (an edge between non-consecutive vertices of the cycle). As usual, we
say that a vertex is simplicial if its neighborhood induces a clique. It is well known
that any chordal graph contains at least one simplicial vertex.

Proposition 3.1. If G is b+-vertex critical graph, then:

(i) b(G) ≤ δ(G)− 1,
(ii) G does not contain simplicial vertices,
(iii) g(G) ≤ 5.
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Proof. (i) Let G be a b+-vertex critical graph and v ∈ V (G) be a vertex of minimum
degree in G. Set b(G − v) = k and consider a b-coloring c of G − v with k colors.
Suppose on the contrary that b(G) ≥ δ(G). So k > δ(G). We define a coloring π of
G with k colors obtained from c as follows. All vertices of G keep their colors except
vertex v which is colored with a missing color in its neighborhood, this is possible
because dG(v) ≤ k − 1. We obtain a b-coloring with k colors such that each b-vertex
of c is also a b-vertex of π, which implies that b(G) ≥ k, a contradiction.

(ii) Suppose that G contains a simplicial vertex x and set b(G− x) = k. Then by
(2.1), we have k > b(G) ≥ ω(G) > dG(x). So with an argument similar to that used
in (i), one can show that G admits a b-coloring with k colors, implying that b(G) ≥ k,
a contradiction.

(iii) This follows immediately from Proposition 2.3 and item (i) of Proposition 3.1.

Items (ii) and (iii) of Proposition 3.1 imply the two next results.

Corollary 3.2. Chordal graphs are not b+-vertex critical.

Corollary 3.3. Graphs with girth at least 6 are not b+-vertex critical.

Further, it is not difficult to see that K3,3 is not b+-vertex critical because
b(K3,3) = b(K2,3) = 2. Also, in view of Theorem 2.1 and item (i) of Proposition 3.1,
we conclude that P, F1 and F2 are not b+-vertex critical, and furthermore, we have
the following result.

Corollary 3.4. Connected cubic graphs are not b+-vertex critical.

Proposition 3.5. Let G1 and G2 be two vertex-disjoint graphs. Then G1 ∨ G2 is
b+-vertex critical graph if and only if G1, G2 are b+-vertex critical graphs.

Proof. Let G = G1 ∨G2 and v be any vertex of G. Suppose without loss of generality
that v ∈ V (G1). By virtue of Lemma 2.2, we have b(G − v) = b((G1 − v) ∨ G2) =
b(G1 − v) + b(G2) > b(G1) + b(G2) = b(G). Thus G is b+-vertex critical graph. Let
us now prove the converse. Let v be any vertex of Gi (i = 1 or 2), and for j = 1, 2,
set Gj = G \ Gi (j 6= i). As G is b+-vertex critical graph, b(G − v) > b(G). This
yields b((Gi − v) ∨Gj) > b(Gi ∨Gj), and by Lemma 2.2, we get b(Gi − v) + b(Gj) >
b(Gi) + b(Gj). This immediately implies that b(Gi − v) > b(Gi) and so for i = 1, 2,
Gi is b+-vertex critical graph.

Proposition 3.6. K3�K3 is b+-vertex critical graph.

Proof. Let G = K3�K3 with vertices x11, x12, x13, x21, x22, x23, x31, x32, x33 such
that for each i ∈ {1, 2, 3}, xi1, xi2, xi3 induce a 3-cycle in this order, and x1i, x2i, x3i
induce a 3-cycle in this order. By assigning color 1 to x12, x31, color 2 to x21, x33, color
3 to x23, x32 and color 4 to x11, x22, we obtain a b-coloring of G − x13 with 4 colors
in which x21, x22, x31, x32 are b-vertices. So up to symmetry b(G − v) ≥ 4 holds for
each vertex v of G. Since, by Proposition 2.4, b(G) = 3, it follows that G is b+-vertex
critical graph.
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The next result is a direct consequence of Propositions 3.5 and 3.6.

Corollary 3.7. The join of k ≥ 2 copies of K3�K3 is b+-vertex critical graph.

4. REMOVING EDGE

We now turn our attention to the effect of edge removal on the b-chromatic number.
Unlike vertex removal, we are interested in graphs for which removing any edge in-
crease the b-chromatic number. As for b+-vertex critical graphs, we show that chordal
graphs are not b+-edge critical graphs. We also prove that Petersen graph, cartesian
product of two cliques K3 and its joins are b+-edge critical graphs. Moreover, some
other partial results were obtained. We start this section by the following proposition
in which we give some properties of b+-edge critical graphs.

Proposition 4.1. Let G be a b+-edge critical graphs. Then the following three prop-
erties hold:

(i) b(G) ≤ ∆(G),
(ii) G does not contain simplicial vertices,
(iii) if G is a d-regular graph, then g(G) ≤ 5.

Proof. (i) Suppose that the first part is not true; so by (2.1), b(G) = ∆(G) + 1. As
∆(G− e) ≤ ∆(G), it follows that b(G− e) ≤ ∆(G) + 1 = b(G), a contradiction.

(ii) Assume that G contains a simplicial vertex x. Let e = xy be the removed edge
from G such that y is any neighbor of x. Consider a b-coloring c of G−e with k colors
and set k = b(G−e). Vertices x, y have the same color, otherwise c remains a b-coloring
of G with k colors and thus b(G) ≥ k, a contradiction. Consequently, any b-vertex
of c has a neighbor (different from x) of color c(x). If ω(G) ≥ k, then (2.1) implies
that b(G) ≥ ω(G) ≥ k, a contradiction. If ω(G) < k, then dG(x) ≤ ω(G)− 1 < k − 1.
Therefore, one can recolor x by a missing color in its neighborhood. But then c remains
a b-coloring of G with k colors, a contradiction.

(iii) This follows immediately from Proposition 2.3 and item (i) of Proposition 4.1.

The following corollary is immediate.

Corollary 4.2. Chordal graphs are not b+-edge critical graphs.

It was shown in [6] that d-regular graphs for d ≤ 6 with girth at least 5, different
from the Petersen graph, have b-chromatic number d+ 1; so Proposition 4.1 item (i)
implies the next corollary.

Corollary 4.3. If G is a d-regular graph with girth g(G) ≥ 5, different from the
Petersen graph, and with d ≤ 6, then G is not b+-edge critical.

Proposition 4.4. Petersen graph and K3�K3 are b+-edge critical graphs.

Proof. Let P be the Petersen graph with vertices x1, x2, x3, x4, x5, y1, y2, y3, y4, y5
such that x1, x2, x3, x4, x5 induce a 5-cycle in this order, y1, y3, y5, y2, y4 induce a
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5-cycle in this order, and xiyi is an edge for each i ∈ {1, . . . 5}. Let K3�K3 be the
cartesian product of two complete graphs of order 3 with vertices as in the proof of
Proposition 3.6. By Theorem 2.1 and Proposition 2.4, we have b(P ) = b(K3�K3) = 3.
By assigning color 1 to x2, y4, y5, color 2 to x5, y2, y3, color 3 to x4, and color 4 to
x1, x3, y1, we obtain a b-coloring of P − x1y1 with 4 colors in which y4, x5, x4, x3 are
b-vertices. Also, by assigning color 1 to x31, x23, color 2 to x21, x32, color 3 to x12, x33
and color 4 to x11, x13, x22, we obtain a b-coloring of K3�K3 − x11x13 with 4 colors
in which x31, x32, x33, x11 are b-vertices. Since all edges of P (respectively, K3�K3)
play the same role, it follows that b(P − e) ≥ 4 (respectively, b(K3�K3 − e) ≥ 4) for
any edge of P (respectively, K3�K3). Thus Petersen graph and K3�K3 are b+-edge
critical graphs.

Now, in contrast, we show that graphs depicted in Figure 1, except Petersen graph,
are not b+-edge critical graphs. Before presenting this result, we recall some additional
definitions and known results.

Remark first that if a graph G admits a b-coloring with k colors, then G has at
least k vertices of degree at least k−1. Irving and Manlove [14,21] define the m-degree
m(G) of G to be the largest integer t such that G has at least t vertices of degree at
least t− 1. Thus every graph G satisfies the following.

Proposition 4.5 ([14,21]). b(G) ≤ m(G).

In [9], the author gave the following definition.

Definition 4.6 ([9]). Let G = (V,E) be a graph with n vertices, and (x1, x2, . . . , xn)
an ordering of V giving a nonincreasing sequence of degrees (i.e., if di is the degree
of xi, we have d1 ≥ d2 ≥ . . . ≥ dn). If we delete in this ordering every vertex xi such
that there exists j < i with N(xi) ⊂ N(xj), the nonincreasing sequence of remaining
degrees is called the modified degree sequence of G.

It was noted in [9] that the set (xi1 , . . . , xik) obtained after deletion of subordinate
vertices may depend on the initial ordering, but the sequence of degrees d′1 ≥ . . . ≥ d′k
in which d′j is the degree of xij , is the same for any choice of the initial ordering.

Using the notion of modified degree sequence, T. Faik ([9]) has introduced a new
parameter, denoted m′(G), giving a bound for b(G) improving the bound of Proposi-
tion 4.5.

Definition 4.7 ([9]). Let d′1 ≥ . . . ≥ d′k be the modified degree sequence of a graph G.
Then m′(G) = max{i : d′i ≥ i− 1}.
Proposition 4.8 ([9]). b(G) ≤ m′(G).

Proposition 4.9. F1, F2 and K3,3 are not b+-edge critical graphs.

Proof. Let G = F1 or F2 or K3,3 and e be an edge of G as shown in the Figure 1. If
G = F1 or K3,3, then one can verify easily that m′(F1− e) = 3 and m′(K3,3− e) = 2,
and so by Proposition 4.8, we have b(F1 − e) ≤ 3 and b(K3,3 − e) ≤ 2. Suppose now
that G = F2 and let x1, x2, x3, x4, x5, x6 be the vertices of G as shown in Figure 1.
Then m(G− e) = 4 because G− e has four vertices of degree three and two vertices
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of degree two. Hence, according to Proposition 4.5, we have b(G − e) ≤ 4. We claim
that b(G − e) 6= 4. Suppose not; hence clearly, for any b-coloring c of G − e with 4
colors, x1, x2, x3, x4 are the unique b-vertices of c. Therefore, suppose without loss
of generality that c(xi) = i for each i in {1, 2, 3, 4}. Since x1 needs all colors on its
neighbors, x5 must be colored with the color 4, which is not possible as x5 is adjacent
to x4 and c(x4) = c(x5); so b(G − e) ≤ 3. Thus, in view of Theorem 2.1, F1, F2 and
K3,3 are not b+-edge critical graphs.

Using Theorem 2.1, Proposition 4.1 item (i) and Propositions 4.4 and 4.9, we
conclude the following.

Corollary 4.10. The Petersen graph is the only connected cubic graph that is b+-edge
critical.

Proposition 4.11. Let G1, G2 be two graphs such that for i = 1, 2, Gi is in
{P,K3�K3}. Then G1 ∨G2 is b+-edge critical graph.

Proof. Let G = G1 ∨ G2. Setting E1 = E(G1) ∪ E(G2) and E2 = E(G1 ∨ G2) \
(E(G1) ∪ E(G2)). So E(G) = E1 ∪ E2. Since all edges of E1 (respectively, E2) play
the same role, there are two types of edges to consider. Let e be any edge of G.
Case 1. e ∈ E1. Then for i, j ∈ {1, 2}, (j 6= i), b(G− e) = b((Gi − e) ∨Gj). By virtue
of Lemma 2.2, we have b(G− e) = b(Gi − e) + b(Gj), and by Proposition 4.4, we get
b(G− e) > b(Gi) + b(Gj) = b(G).

Case 2. e ∈ E2. Suppose first that G1 and G2 are two copies of Petersen graphs. For
i = 1, 2, let xi1, xi2, xi3, xi4, xi5, yi1, yi2, yi3, yi4, yi5 be the vertices of Gi defined as in the
proof of Proposition 4.4. For i = 1, 2, let ci be a proper coloring of Gi with 4 colors
defined as follows. Assign color 1 to x13, y14 , y15 , color 2 to x11, x14, y13 , color 3 to x15, y11 , y12 ,
and color 4 to x12. For the second copy, set c2(x22) = c1(x12) and c2(x2j ) = 4 + c1(x1j ),

c2(y2j ) = 4 + c1(y1j ) for each j ∈ {1, 3, 4, 5}. By combining c1 and c2 we obtain a
b-coloring of G − x12x22 with 7 colors in which x12, y

1
3 , y

1
4 , y

1
1 , y

2
1 , y

2
3 , y

2
4 are b-vertices.

Thus up to symmetry b(G − e) ≥ 7 for any edge e ∈ E2. According to Theorem 2.1
and Lemma 2.2, b(G) = b(G1) + b(G2) = 6. Therefore b(G) < b(G− e).

Suppose now that G1 is a Petersen graph and G2 is the cartesian product of two
cliques K3 where G1 and G2 are defined as in the proof of Propositions 4.4 and 3.6,
respectively. For i = 1, 2, let ci be a proper coloring of Gi with 4 colors defined as
follows. Assign color 4 to x12, color 5 to x11, x22, x33, color 6 to x13, x21, x32 and color
7 to x23, x31. Combination of c1 and c3 give a b-coloring of G − x12x12 with 7 colors
such that x12, y13 , y14 , y11 , x23, x32, x33 are b-vertices. Up to symmetry, b(G − e) ≥ 7 for
any edge e ∈ E2. According to Theorem 2.1, Lemma 2.2 and Proposition 2.4, we have
b(G) = b(G1) + b(G2) = 6. Thus b(G) < b(G− e) for any edge e ∈ E2.

Finally, suppose that G1 and G2 are two copies of the cartesian product of two
cliques K3. For i = 1, 2, let xi11, xi12, xi13, xi21, xi22, xi23, xi31, xi32, xi33 be the vertices
of Gi with 5 colors defined as in the proof of Proposition 3.6. For i = 1, 2, let ci
be a proper coloring of Gi defined as follows. Assign color 1 to x113, x122, color 2 to
x123, x

1
31, color 3 to x112, x133, color 4 to x121, x132 and color 9 to x111. For the second copy,

color the vertex x211 by 9, and for the remaining vertices, set c2(x2ij) = c1(x1ij) + 4
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where i, j are in {1, 2, 3} and (i, j) 6= (1, 1). By combining c1 and c2 we obtain a
b-coloring of G− x111x211 with 9 colors in which x111, x122, x123, x132, x133, x222, x223, x232, x233
are b-vertices. Thus up to symmetry b(G− e) ≥ 9 for any edge e ∈ E2. According to
Theorem 2.1, Lemma 2.2 and Proposition 2.4, we have b(G) = b(G1) + b(G2) = 6.
Therefore b(G) < b(G− e) for any edge e ∈ E2.

Thus in either case, we have b(G) < b(G− e) for any edge e ∈ E implying that G
is b+-edge critical.

Using Propositions 4.4 and 4.11, we obtain the next result.

Corollary 4.12. Let G1, G2, . . . , Gk (k ≥ 3) be k graphs such that each of them is a
Petersen graph or the cartesian product of two cliques K3. Then G1 ∨G2 ∨ . . . ∨Gk

is b+-edge critical graph.

Proof. Setting G = G1∨G2∨. . .∨Gk and let e = uv be any edge of G. If u, v ∈ V (Gi),
(1 ≤ i ≤ k), then

b(G− e) = b((Gi − e) ∨ (G \Gi)).

Lemma 2.2 implies that

b(G− e) = b(Gi − e) + b(G \Gi),

and by Proposition 4.4, we get

b(G− e) > b(Gi) + b(G \Gi) = b(G).

If u ∈ V (Gi) and v ∈ V (Gj), (1 ≤ i 6= j ≤ k), then

b(G− e) = b(Gi ∨Gj − e) ∨ (G \Gi ∨Gj)).

By virtue of Lemma 2.2,

b(G− e) = b(Gi ∨Gj − e) + b(G \Gi ∨Gj),

and by Proposition 4.11, we have

b(G− e) > b(Gi ∨Gj) + b(G \Gi ∨Gj) = b(G).

Thus G is b+-edge critical graph.

The previous results motivate the following problems.

Problem 4.13. Is it true that a graph G is b+-vertex critical graph if and only if
G = K3�K3 or it is the join of k ≥ 2 copies of K3�K3?

Problem 4.14. Is it true that a graph G is b+-edge critical graph if and only if
G = P, K3�K3, or the join of several graphs such that each of them is P or K3�K3.
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