PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

One-dimensional regional shear velocity structure from joint inversion of fundamental mode group velocity dispersion measurements of Love and Rayleigh waves: application to the Uttarakhand Himalaya

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Between 2017 and 2019, the CSIR-NGRI, Hyderabad, Telangana, established a broad-band seismic-network with fifty-five 3-component broadband seismometers in the Himalayan region of Uttarakhand, India. Out of 55 three component broadband seismic (BBS) networks, we chose 17 for the present study. Using digital waveform data from twenty-one (21) regional Indian earthquakes of Mw 5.0-6.2 that were recorded in the 17 broadband seismometer, we compute fundamental mode group-velocity dispersion (FMGVD) characteristics of surface waves (Love and Rayleigh waves) and the average one-dimensional regional shear-wave velocity (Vs) structure of the Uttarakhand Himalayan region. First, we compute FMGVD curves for Love waves (6-73 s) and Rayleigh waves (at 6.55-73 s) period, and then, we finally invert these dispersion curves to compute the final average one-dimensional regional crustal & sub-crustal shear-wave velocity (Vs) structure below the Uttarakhand Himalaya. Our best model in Uttarakhand Himalayan region, India, reveals the 8-layered crust with a mid-crustal low velocity layer (MC-LVL) (approximately a drop of 1.5-2.3% in Vs) between 8 and 20 km depth in the proximity of MCT (Main Central Thrust). In the upper crustal part (0-20 km depths), our modelling suggests shear velocities (Vs) varies from 3.1 to 3.9 km/sec while shear velocities (Vs) in the lower crustal part (20-45 km depth) are modelled to be varying from 3.7 to 4.69 km per sec. The Moho-depth is calculated to be 45 km deep below the K-G Himalaya, and the shear-velocity (Vs) in the sub-crustal sector is 4.69 km/sec. Our estimated mid-crustal low-velocity layer (MC-LVL) could be linked to the presence of metamorphic fluids in the fractured Main Himalayan Thrust (MHT), resulting from the weakening of the crustal material at the interface between the overriding Eurasian plate and upper part of the underthrusting Indian plate.
Czasopismo
Rocznik
Strony
2619--2632
Opis fizyczny
Bibliogr. 51 poz., rys., tab.
Twórcy
  • Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, India
  • CSIR-National Geophysical Research Institute, Hyderabad, 500007, India
  • CSIR-National Geophysical Research Institute, Hyderabad, 500007, India
autor
  • CSIR-National Geophysical Research Institute, Hyderabad, 500007, India
autor
  • Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, India
  • Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, India
autor
  • Wadia Institute of Himalayan Geology, 33 GMS Road, Dehradun, 248001, India
Bibliografia
  • 1. Avouac JP (2003) Mountain building, erosion, and the seismic cycle in the Nepal Himalaya. Adv Geophys 46:1–80. https://doi.org/10.1016/S0065-2687(03)46001-9
  • 2. Avouac JP, Meng L, Wei S, Wang T, Ampuero JP (2015) Lowered geoflocked Main Himalayan Thrust unzipped by the 2015 Gorkha earthquake. Nat Geosci 8:708–711
  • 3. Berteusen KA (1977) Moho depth determinations based on spectral ratio analysis of NORSAR long-period P waves. Phys Earth Planet Int 31:313–326
  • 4. Bilham R (2019) Himalayan earthquakes: a review of historical seismicity and early 21st century slip potential. Geol Soc London Special Publ 483:423–482. https://doi.org/10.1144/SP483.16
  • 5. Caldwell WB, Klemperer SL, Lawrence JF, Rai SS, Ashish (2013) Characterizing the main Himalayan thrust in the Garhwal Himalaya, India with receiver function CCP stacking. Earth Planet Sci Lett 367:15–27
  • 6. Christensen NI (1996) Poisson’s ratio and crustal seismology. J Geophys Res 101:3139–3156
  • 7. Christensen NI, Mooney WD (1995) Seismic velocity structure and composition of the continental crust: a global view. J Geophys Res 100:9761–9788
  • 8. Drukpa D, Velasco AA, Doser DI (2006) Seismicity in the kingdom of Bhutan (1937–2003): evidence for crustal trans current deformation. J Geophys Res 111:B06301. https://doi.org/10.1029/2004JB003087
  • 9. Duputel Z, Vergne J, Rivera L, Wittlinger G, Farra V, Hetényi G (2016) The 2015 Gorkha earthquake: a large event illuminating the Main Himalayan Thrust fault. Geophys Res Lett 43:2517–2525
  • 10. Dziewonski AS, Bloch S, Landisman N (1969) A technique for the analysis of transient seismic signals. Bull Seismol Soc Am 59:427–444
  • 11. Gahalaut VK, Kalpna (2001) Himalayan mid crustal ramp. Curr Sci 81(12):1641–1646
  • 12. Gansser A (1964) Geology of the Himalayas; London Wileyinter-science. p 289
  • 13. Gaur VK, Chander R, Sarkar I, Khattri KN, Sinhval H (1985) Seismicity and state of stress from investigations of local earthquakes in the Kumaun Himalaya. Tectonophysics 118:243–251
  • 14. Heim A, Gansser A (1939) Central Himalaya: Geo-logical observations of the Swiss Expedition, 1936, Delhi, India, Hindustan Publishing p 246
  • 15. Heim A, Gansser A (1936) Central Himalaya: geological observa-tions of Swiss expedition. Denkschr Schweiss Nat Ges 73:245
  • 16. Herrmann RB (1987) Surface wave inversion, in computer programs in seismology, vol IV. Saint Louis University, St. Louis, Missouri, USA
  • 17. Herrmann RB (2004) Computer programs in seismology. St. Louis University, St. Louis, Missouri, USA, Department of Earthand Atmospheric Sciences
  • 18. Kanaujia J, Kumar A, Gupta SC (2015) 1D velocity structure and characteristics of contemporary local seismicity around the Tehri Region, Garhwal Himalaya. Bull Seismol Soc Am 105:1852–1869. https://doi.org/10.1785/0120140306
  • 19. Kayal JR (1996) Precursor seismicity, foreshocks and aftershocks of the Uttarkashi earthquake of October 20, 1991 at Garhwal Himalaya. Tectonophysics 263(1):339–345
  • 20. Kayal JR, Ram S, Singh OP, Chakraborty PK, Karunakar G (2003) Aftershocks of the March 1999 Chamoli earthquake and seismotectonic structure of the Garhwal Himalaya. Bull Seismol Soc Am 93:109–117
  • 21. Kennett BLN, Engdahl ER (1991) Travel times for global earthquake location and phase identification. Geophys J Int 105:429–465. https://doi.org/10.1111/j.1365-246X.1991.tb06724.x
  • 22. Khattri KN (1992) Local seismic investigations in Garhwal-Kumaun Himalaya. Geol Soc India Mem 23:45–66
  • 23. Khattri KN, Chandra R, Gaur VK, Sarkar I, Kumar S (1989) New seismological result on tectonics of Garhawal Himalaya. Earth Planet Sci 98(1):91–109
  • 24. Kumar N, Sharma J, Arora RB, Mukhopadhyay S (2009) Seismotectonic model of the Kangra–Chamba sector of NW Himalaya: constraints from joint hypocenter determination and focal mechanism. Bull Seismol Soc Am 99:95–109
  • 25. Lavé J, Avouac JP (2001) Fluvial incision and tectonic uplift across the Himalayas of central Nepal. J Geophys Res 106:26–561
  • 26. Lemonnier C, Marquis G, Perrier F, Avouac JP, Chitrakar G, Kafle B, Bano M (1999) Electrical structure of the Himalaya of central Nepal: high conductivity around the mid-crustal ramp along the MHT. J Geophys Res 26:3261–3264
  • 27. Levshin AL, Ratnikova L, Berger J (1992) Peculiar-itiesof surface wave propagation across central Eurasia. Bull Seismol Soc Am 82:2464–2493
  • 28. Liang X, Zhou S, Chen YJ, Jin G, Xiao L, Liu P, Ning J (2008) Earthquake distribution in southern Tibet and its tectonic implications. J Geophys Res Solid Earth. https://doi.org/10.1029/2007JB005101
  • 29. Mahesh P, Rai SS, Sivaram K, Paul A, Gupta S, Sharma R, Gaur VK (2013) One- dimensional reference velocity model and precise locations of earthquake hypocenters in the central (Kumaon–Garhwal) Himalaya. Bull Seismol Soc Am 103:328–339
  • 30. Mandal P, Padhy S, Rastogi BK, Satyanarayana HVS, Kousalya M, Vijayraghavan R, Srinivasan (2001) A aftershock activity and frequency-dependent low coda Qc in the epicentral region of the 1999 Chamoli earthquake of Mw6.4. Pure Appl Geophys 158:1719–1735
  • 31. Mandal P, Srinivas D, Suresh G, Srinagesh D (2021) Modelling of crustal composition and Moho depths and their implications toward seismogenesis in the Kumaon-Garhwal Himalaya. Sci Rep 11:14067. https://doi.org/10.1038/s41598-021-93469-1
  • 32. Mandal P, Srinagesh D, Vijayraghavan R, Suresh G, Naresh B, Raju PS, Devi A, Swathi K, Singh DK, Srinivas D, Saha S, Shekar M, Sarma ANS, Murthy YVVBSN (2022) Seismic velocity imaging of the Kumaon-Garhwal Himalaya. India Natural Hazard 111:2241–2260
  • 33. Monsalve G, Sheehan A, Schulte-Pelkum V, Rajaure S, Pandey R, Mand WuF (2006) Seismicity and one-dimensional velocity structure of the Himalayan collision zone: earthquakes in the crust and upper mantle. J Geophys Res. https://doi.org/10.1029/2005JB004062
  • 34. Pandey MR, Tandukar RP, Avonac JP, Lave J, Massot JP (1995) Interseismic strain accumulation on the Himalayan crustal ramp (Nepal). Geophys Res Lett 22:751–754
  • 35. Pant CC, Paul A (2007) Recent trends in seismicity of Uttaranchal. J Geol Soc India 70:619–626
  • 36. Paul A, Tiwari A, Upadhyay R (2019) Central seismic gap and probable zone of large earthquake in North West Himalaya. Him Geol 40(2):199–212
  • 37. Petley DN, Hearn GJ, Hart A, Rosser NJ, Dunning SA, Oven K, Mitchell WA (2007) Trendsin landslide occurrence in Nepal. Nat Hazards 43:23–44. https://doi.org/10.1007/s11069-006-9100-3
  • 38. Powers PM, Lillie RJ, Yeats RS (1998) Structure and shortening of the Kangra and Dehra Dun reentrants, Sub-Himalaya India. Geol Soc Amer Bull 110:1010–1027
  • 39. Rajendran CP, Rajendran K (2001) Characteristics of deformation and past seismicity associated with the 1819 Kutch Earthquake. Northwestern India Bull Seismol Soc Am 91(3):407–426
  • 40. Rastogi BK, Gupta HK, Mandal P (2001) The deadliest stable continental region earthquake that occurred near Bhuj on 26 January 2001. J Seismol 5:609–615
  • 41. Satyabala PS, Gupta HK (1996) Is the quiescence of major earthquakes (M ≥7.5) Since 1952 in the Himalaya and Northeast India Real?; bull. Seismol Soc Am 86:1983–1986
  • 42. Shapiro NM, Campillo M, Paul A, Singh SK, Jongmans D, Sanchez-Sesma F (1997) Surface wave propagation across the Mexican volcanic belt and origin of the long period seismic wave amplification in the valley of Mexico. Geophys J Int 128:151–166
  • 43. Srivastava P, Mitra G (1994) Thrust geometries and deep structure of the outer and lesser Himalaya, Kumaon and Garhwal (India): implications for evolution of the Himalayan fold-and-thrust belt. Tectonics 13:89–109
  • 44. Thakur VC, Sriram V, Mundepi AK (2000) Seismotectonics of the great 1905 Kangra earthquake meizoseismal region in Kangra-Chamba. NW Himalaya Tectonophys 326(3):289–298
  • 45. Tiwari A, Paul A, Singh R, Upadhyay R (2021) Potential seismogenic asperities in the Garhwal-Kumaun region, NW Himalaya: seismotectonic implications. Nat Hazards 107:73–95. https://doi.org/10.1007/s11069-021-04574-3
  • 46. Tiwari A, Sain K, Kumar A, Tiwari J, Paul A, Kumar N, Haldar C, Kumar S, Pandey C (2022) Potential seismic precursors and surficial dynamics of a deadly Himalayan disaster: an early warning approach. Sci Rep 12:3733. https://doi.org/10.1038/s41598-022-07491-y
  • 47. Tiwari A, Paul A, Sain K, Singh R, Upadhyay R (2023) Depth-dependent seismic anomalies and potential asperity linked to fluid-driven crustal structure in Garhwal region. NW Himalaya Tectonophys 862:229975. https://doi.org/10.1016/j.tecto.2023.229975
  • 48. Tiwari A, Kumar P, Sain K, Paul A (2023) Possible implications of recent Doti-Nepal earthquake (M 6.3) for seismicity monitoring in the Central Himalaya. Himalayan Geology 44(2):57–67
  • 49. Valdiya KS (1981) Tectonics of the Central Sector of the Himalaya. Am Geophys Union Geodyn Ser 3:87
  • 50. Valdiya K S (1980) Geology of Kumaun Lesser Himalaya, Interim Rec- ord: Dehradun, Wadia Institute of Himalayan Geology, Dehradun, India; 291 pp.
  • 51. Wei S, Chen YJ, Sandvol E, Zhou S, Yue H, Jin G, Hearn TM, Jiang M, Wang H, Fan W, Liu Z, Ge Z, Wang Y, Feng Y, Ni J (2010) Regional earthquakes in northern Tibetan Plateau: Implications for lithospheric strength in Tibet. Geophys Res Lett 37(L19307):5. https://doi.org/10.1029/2010GL044800
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d41ad1e8-f001-46c4-b06d-2281ab8f1762
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.