Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Results of numerical simulation of heat, mass and momentum transfer in cold storage chambers for vegetables along with experimental validation are presented in the paper. The case of an experimental napa cabbage cold store was analysed. Coupling of processes occurring in the bulk of vegetables and in the air cooler accomplished by means of the user-defined functions in Ansys Fluent are presented. The model combines the cooling capacity with the processes occurring in the bed of cabbage, namely transpiration and respiration, and other heat gains/losses that occur in the chamber. The model of porous media was applied in terms of the bed of vegetables and air cooler. A thermal non-equilibrium model was assumed. The output of simulations were the heat and mass transfer coefficients. The numerical results were compared with the measurements. A good agreement between numerical results and experimental data in terms of temperatures in the bulk of vegetables and relative humidity was achieved. The moisture loss in stored products resulting in total loss of weight was analysed. Good agreement with experimental results and regions of the highest shrinkage of the stored vegetables were indicated.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
223--235
Opis fizyczny
Bibliogr. 41 poz.
Twórcy
autor
- PRONAR, R&D Department, Mickiewicza 101A, 17-210 Narew, Poland
autor
- Department of Thermal Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
autor
- Department of Thermal Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
autor
- Department of Thermal Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
autor
- Department of Thermal Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
autor
- Department of Thermal Engineering, Bialystok University of Technology, Wiejska 45C, 15-351, Bialystok, Poland
Bibliografia
- [1] Tian, X., Engel, B.A., Qian, H., Hua, E., Sun, S., & Wang, Y. (2021).Will reaching the maximum achievable yield potential meet future global food demand? Journal of Cleaner Production, 294, 126285. doi: 10.1016/j.jclepro.2021.126285
- [2] Glaros, A., Marquis, S., Major, C., Quarshie, P., Ashton, L., Green, A.G., Kc, K.B., Newman, L., Newell, R., Yada, R.Y., & Fraser, E. (2022). Horizon scanning and review of the impact of five food and food production models for the global food system in 2050. Trends in Food Science & Technology, 119, 550–564. doi: 10.1016/j.tifs.2021.11.013
- [3] Bournet, P.E, & Rojano, F. (2022). Advances of Computational Fluid Dynamics (CFD) applications in agricultural building mod-elling: Research, applications and challenges. Computers and Electronics in Agriculture, 201, 107277. doi: 10.1016/j.com-pag.2022.107277
- [4] Janusz, S., Szudarek, M., Rudniak, L., & Borcuch M. (2023). Analysis of heat and mass transfer in an adsorption bed using CFD methods. Archives of Thermodynamics, 44(2), 177–194. doi: 10.24425/ather.2023.146564
- [5] Hoang, H., Duret, S., Flick, D., & Laguerre, O. (2015). Prelimi-nary study of airflow and heat transfer in a cold room filled with apple pallets: Comparison between two modelling approaches and experimental results. Applied Thermal Engineering, 76, 367−381. doi: 10.1016/j.applthermaleng.2014.11.012
- [6] Krawczyk, K., & Badyda, K. (2011). Two-dimensional CFD modeling of the heat and mass transfer process during sewage sludge drying in a solar dryer. Archives of Thermodynamics, 32(4), 3–16. doi: 10.2478/v10173-011-0028-y
- [7] Han, J.W., Zhao, C.J., Yang, X.T., Qian, J.P., & Fan, B.L. (2015). Computational modelling of airflow and heat transfer in a vented box during cooling: Optimal package design. Applied Thermal Engineering, 91, 883−893. doi: 10.1016/j.applthermaleng.2015. 08.060
- [8] Nalbandia, H., Seiiedlou, S., Ghasemzadeh H.R., & Rangbar, F. (2016). Innovative parallel airflow system for forced-air cooling of strawberries. Food and Bioproducts Processing, 100(A), 440–449. doi: 10.1016/j.fbp.2016.09.002
- [9] Defraeye, T., Lambrecht, R., Delele, M.A., Tsige, A.A., Opara, U.L., Cronjé, P., Verboven, P., & Nicolai, B. (2014). Forced-con-vective cooling of citrus fruit: Cooling conditions and energy consumption in relation to package design. Journal of Food Engineering, 121, 118–127. doi: 10.1016/j.jfoodeng.2013.08.021
- [10] Zhang, R., & Long, J. (2017). Study on drying uniformity of static small-sized drying box for fruits and vegetables. Procedia Engineering, 205, 2615–2622. doi: 10.1016/j.proeng.2017.10. 201
- [11] Gautam, K.R., Rong, L., Iqbal, A., & Zhang, G. (2021). Full-scale CFD simulation of commercial pig building and comparison with porous media approximation of animal occupied zone. Computers and Electronics in Agriculture, 186, 106206. doi: 10.1016/ j.compag.2021.106206
- [12] Doumbia, E.M., Janke, D., Yi, Q., Amon, T., Kriegel, M., & Hempel, S. (2021). CFD modelling of an animal occupied zone using an anisotropic porous medium model with velocity de-pended resistance parameters. Computers and Electronics in Agriculture, 181 105950. doi: 10.1016/j.compag.2020.105950
- [13] Verboven, P., Hoang, M.L., Baelmans, L., & Nicolai, B.M. (2004). Airflow through beds of apples and Chicory roots. Bio-systems Engineering, 88(1), 117−125. doi: 10.1016/j.biosystem-seng. 2004.02.002
- [14] Nahor, H.B., Hoang, M.L., Verboven, P., Baelmans, M., & Nico-lai B.M. (2005). CFD model of the airflow, heat and mass transfer in cool stores. International Journal of Refrigeration, 28(3), 368−380. doi: 10.1016/j.ijrefrig.2004.08.014
- [15] Mirade, P.-S., Rougier, T., Daudin, J.-D., Picque, D., & Corrieu, G. (2006). Effect of design of blowing duct on ventilation homo-geneity around cheeses in a ripening chamber. Journal of Food Engineering, 75(1) 59−70. doi: 10.1016/j.jfoodeng.2005. 03.053
- [16] Hoang, M.L., Verboven, P., De Baerdemaeker, J., & Nicolai, B.M. (2000). Analysis of the air flow in a cold store by means of computational fluid dynamics. International Journal of Refrigeration, 23(2), 127−140. doi: 10.1016/S0140-7007(99) 00043-2
- [17] Tapsoba, M., Moureh, J., & Flick, D. (2006). Airflow patterns in an enclosure loaded with slotted pallets. International Journal of Refrigeration, 29(6), 899−910. doi: 10.1016/j.ijrefrig.2006.01. 011
- [18] Tapsoba, M., Moureh, J., & Flick, D. (2007). Airflow patterns inside slotted obstacles in a ventilated enclosure. Computers & Fluids, 36(5), 935−948. doi: 10.1016/j.compfluid.2006.04.002
- [19] Moureh, J., Menia, N., & Flick, D. (2002). Numerical and exper-imental study of airflow in a typical refrigerated truck configura-tion loaded with pallets. Computers and Electronics in Agricul-ture, 34(1-3), 25−42. doi: 10.1016/S0168-1699(01) 00178-8
- [20] Moureh, J., Tapsoba, M., & Flick, D. (2009). Airflow in a slot-ventilated enclosure partially filled with porous boxes: Part I – Measurements and simulations in the clear region. Computers & Fluids, 38(2), 194−205. doi: 10.1016/j.compfluid.2008.02.006
- [21] Moureh, J., Tapsoba, S., & Flick, D. (2009). Airflow in a slot-ventilated enclosure partially filled with porous boxes: Part II − Measurements and simulations within porous boxes. Computers & Fluids, 38(2), 206−220. doi: 10.1016/j.compfluid.2008.02.007
- [22] Moureh, J., & Flick, D. (2004). Airflow pattern and temperature distribution in a typical refrigerated truck configuration loaded with pallets. International Journal of Refrigeration, 27(5), 464−474. doi: 10.1016/j.ijrefrig.2004.03.003
- [23] Ferrua, M.J., & Singh, R.P. (2009). Modeling the forced-air cool-ing process of fresh strawberry packages, Part I: Numerical model. International Journal of Refrigeration, 32(2), 335−348. doi: 10.1016/j.ijrefrig.2008.04.010
- [24] Ferrua, M.J., & Singh, R.P. (2009). Modeling the forced-air cool-ing process of fresh strawberry packages, Part II: Experimental validation of the flow model. International Journal of Refrigera-tion, 32(2), 349−358. doi: 10.1016/j.ijrefrig.2008.04. 009
- [25] Delele, M.A., Schenk, A., Tijskens, E., Ramon, H., Nicolai, B.M., & Verboven, P. (2009). Optimization of the humidification of cold stores by pressurized water atomizers based on a multi-scale CFD model. Journal of Food Engineering, 91(2), 228−239. doi: 10.1016/j.jfoodeng.2008.08.027
- [26] Delele, M.A., Schenk, A., Ramon, H., Nicolai, B.M., & Ver-boven, P. (2009). Evaluation of a chicory root cold store humidi-fication system using computational fluid dynamics. Journal of Food Engineering, 94(1), 110−121. doi: 10.1016/j.jfoodeng. 2009.03.004
- [27] Chourasia, M.K., & Goswami, T.K. (2007). Steady state CFD modeling of airflow, heat transfer and moisture loss in a commer-cial potato cold store. International Journal of Refrigeration, 30(4), 672−689. doi: 10.1016/j.ijrefrig.2006.10. 002
- [28] Xu, Y., & Burfoot, D. (1999). Simulating the bulk storage of foodstuffs. Journal of Food Engineering, 39(1), 23−29. doi: 10.1016/S0260-8774(98)00139-3
- [29] Ansys Inc. (2015). Ansys Fluent Theory Guide, Release 16.0. Ansys Inc., Canonsburg.
- [30] Bohojło-Wiśniewska, A. (2015). Numerical modelling of humid airflow around a porous body. Acta Mechanica et Automatica, 9(3), 161−166. doi: 10.1515/ama-2015-0027
- [31] Śmierciew, K., Kołodziejczyk, M., Gagan J., & Butrymowicz D. (2018). Numerical modeling of fin heat exchanger in application to cold storage. Heat Transfer Engineering, 39(10), 874−884. doi: 10.1080/01457632.2017.1338862
- [32] Butrymowicz, D., Łapiński, A., Gagan, J., & Śmierciew, K. (2016). Application of single blow technique for heat transfer measurement in packed bed of vegetables. 16th International Refrigeration and Air Conditioning Conference at Purdue, 11-14 July, West Lafayette, USA.
- [33] Becker, B.R., & Fricke, B.A. (1996). Simulation of moisture loss and heat loads in refrigerated storage of fruits and vegetables. New Developments in Refrigeration for food Safety and Quality (pp. 210−221), 2-4 October, Lexington, USA, International In-stitute of Refrigeration and American Society of Agricultural Engineers.
- [34] Bird, R.B., Stewart, W.E., & Lightfoot, E.N. (2002). Transport Phenomena. John Wiley, New York.
- [35] Nguyen, T.A., Verboven, P., Schenk, A., & Nicolai, B.M. (2007). Prediction of water loss from pears during controlled atmosphere storage a affected by relative humidity. Journal of Food Engi-neering, 83(2), 149−155. doi: 10.1016/j.jfoodeng.2007.02. 015
- [36] Dehghannya, J., Ngadi, M., & Vigneault, C. (2008). Simultane-ous aerodynamic and thermal analysis during cooling of stacked spheres inside ventilated packages. Chemical Engineering Tech-nology, 31, (11), 1651−1659. doi: 10.1002/ceat.200800290
- [37] Becker, B.R., & Fricke, B.A. (1996). Transpiration and respira-tion of fruits and vegetables. New Developments in Refrigeration for Food Safety and Quality (pp. 110−121), 2-4 October, Lex-ington, USA, International Institute of Refrigeration and Ameri-can Society of Agricultural Engineers.
- [38] ASHRAE (2006). Thermal properties of foods (Chap. 9). In Handbook – Refrigeration, (pp. 9.1−9.31). Inch-Pound Edition, American Society of Heating, Refrigerating and Air-Condition-ing Engineers, Inc.
- [39] Ma, X., Ding, G., Zhang, Y., & Wang K. (2007). Airside heat transfer and friction characteristics for enhanced fin-and-tube heat exchanger with hydrophilic coating under wet conditions. International Journal of Refrigeration, 30(7), 1153−1167. doi: 10.1016/j.ijrefrig.2007.03.001
- [40] Kondjoyan, A. (2006). A review on surface heat and mass transfer coefficients during air chilling and storage of food products. International Journal of Refrigeration, 29(6), 863−875 doi: 10.1016/j.ijrefrig.2006.02.005
- [41] Kołodziejczyk M., Butrymowicz D., Gagan J., & Śmierciew K. (2016). Investigations of Chinese cabbage cold storage chamber operation. 16th International Refrigeration and Air Conditioning Conference at Purdue, 11-14 July, West Lafayette, USA
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4159e09-d146-484d-a6be-ed191657e2f5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.