PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of the Holocene foredune plain in the Narva-Jõesuu area, eastern Gulf of Finland

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The morphogenesis and inner structure of the Holocene foredune plain in the Narva-Joesuu area, eastern Gulf of Finland, were studied using optically stimulated luminescence (OSL) dating, ground-penetrating radar (GPR) study and interpretation of airborne LIDAR elevation data. The results show that the Narva-Joesuu foredune plain consists of ca. 100 parallel coastal foredune ridges built of well-sorted fine sand underlain by gently (~7°) seaward-dipping sandy beach deposits. The distal part of the plain, which consists of at least 15 ridges, formed during the regressive phase of the Ancylus Lake/Early Litorina Sea, serving as a barrier for the lagoon behind it. A larger portion of ridges, with an average progradation rate of 0.26 m a-1, formed under conditions of falling relative sea level during the Litorina regression and was separated from the older foredune succession by a hiatus related to the Litorina transgression at 8.5-7.3 cal. ka BP. In the highest central part of the plain the foredune growth was interrupted by foredune instability and a re-blowing episode dated to 5.4 ± 0.9 ka BP which may correlate with a larger regional cooling at 5.8-5.1 cal. ka BP in the North Atlantic and central Europe. During the last 3000 years, the foredune progradation rate decreased to 0.19 m a-1, most probably because of decelerated land-uplift and increased human impact due to coastal protection.
Rocznik
Strony
89--100
Opis fizyczny
Bibliogr. 34 poz., rys., wykr.
Twórcy
autor
  • Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
  • Institute of History and Archaeology, University of Tartu, Lossi 3, 51003 Tartu, Estonia
autor
  • Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
autor
  • Department of Geology, University of Tartu, Ravila 14A, 50411 Tartu, Estonia
autor
  • Department of Geography, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
autor
  • Department of Geography, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia
autor
  • Finnish Museum of Natural History, University of Helsinki, Gustaf Hällströmin katu 2, 00014 Helsinki, Finland
Bibliografia
  • 1. Aitken M.J. (1985) Thermoluminescence dating. Studies on Archaeological Science. Academic Press Inc. Ltd., London.
  • 2. Andrén T., Björck S., Andren E., Conley L.Z., Anjar J. (2011) The development of the Baltic Sea Basin during the Last 130 ka. In: The Baltic Sea Basin (eds. J. Harff, S. Björck and P. Hoth): 75-97. Central and Eastern European Development Studies. Springer-Verlag, Berlin.
  • 3. Ankjærgaard C., Murray A. (2007) Total beta and gamma dose rates in trapped charge dating based on beta counting. Radiation Measurements, 42: 352-359.
  • 4. Barton C.V.M., Montagu K.D. (2004) Detection of tree roots and determination of root diameters by ground-penetrating radar under optimal conditions. Tree Physiology, 24: 1323-1331.
  • 5. Bird E.C.F. (1984) Coasts: an introduction to coastal geomorphology. Oxford.
  • 6. Bøtter-Jensen, L., Duller G.A.T. (1992) A new system for measuring OSL from quartz samples. Nuclear Tracks and Radiation Measurements, 20: 549-553.
  • 7. Bøtter-Jensen L., Mejdahl V., Murray A.S. (1999) New light on OSL. Quaternary Geochronology, 18: 303-309.
  • 8. Buynevich I.V., Souza Filho P.W.M., Asp N.E. (2010) Dune advance into a coastal forest, equatorial Brazil: a subsurface perspective. Aeolian Research, 2: 27-32.
  • 9. Cooper J.A.G. (2007) High energy coasts sedimentary indicators. In: Encyclopedia of Quaternary Science (ed. S.A. Elias): 2983-2993. Elsevier, London.
  • 10. Dick son M.E., Bristow C.S., Hicks D.M., Jol H., Stapleton J., Todd D. (2009) Beach volume on an eroding sand-gravel coast determined using ground penetrating radar. Journal of Coastal Research, 255: 1149-1159.
  • 11. Ekman M. (1996) A consist ent map of the postglacial uplift of Fennoscandia. Terra Nova, 8: 158-165.
  • 12. Estonian Land Board (2011) Elevation data. Estonian Land Board, Tallinn. http://geoportaal.maaamet.ee/est/Andmed-ja-kaardid/ Topograafilised-andmed/Korgusandmed-p114.htm (review in En - glish: http://geoportaal.maaamet.ee/eng/Maps-and-Data/Topo- graphic-data/Elevation-data-p308.html) (07.10.2012).
  • 13. Galbraith R.F. (1990) The radial plot: graphical assessment of spread in ages. Nuclear Tracks and Radiation Measurements, 17: 207-214.
  • 14. Hesp P. (2002) Foredunes and blowouts: initiation, geomorphology and dynamics. Geomorphology, 48: 245-268.
  • 15. Kearney M.S. (1996) Sea-level change during the last thousand years in Chesapeake Bay. Journal of Coastal Research, 12: 977-983.
  • 16. Lepland A., Hang T., Kihno K., Sakson M., Sandgren P., Lepland A. (1996) Holocene sea-level changes and environmental history in the Narva area, North-eastern Estonia. In: Coastal Estonia: Recent Advances in Environmental and Cultural History (ed. T. Hackens): 314-358. Rixensart PACT, Belgium.
  • 17. Linden M., Möller P., Björck S., Sandgren P. (2006) Holocene shore displacement and deglaciation chronology in Norrbotten, Sweden. Boreas, 35: 1-22.
  • 18. Magny M., Haas J.N. (2004) A major widespread climatic change around 5300 cal. yr BP at the time of the Alpine Iceman. Journal of Quaternary Science, 19: 423-430.
  • 19. Martin E., Schwartz M. (1991) Geomorphic evolution of the Narva-Luuga Coast, U.S.S.R. Shore and Beach, 59 (2): 28-32.
  • 20. Mayewski P.A., Meeker L.D., Twickler M.S., Whitlow S., Yang Q., Lyons W.B., Prentice M. (1997) Major features and forcing of high-latitude northern hemisphere atmospheric circulation using a 110,000-year long glaciochemical series. Journal of Geophysical Research - Oceans, 102: 26345-26366.
  • 21. Moros M., Emeis K., Risebrobakken B., Snowball I., Kuijpers A., McManus J., Jansen E. (2004) Sea surface temperatures and ice rafting in the Holocene North Atlantic: climate influences on Northern Europe and Greenland. Quaternary Science Reviews, 23: 2113-2126.
  • 22. Murray A., Wintle A. (2000) Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol. Radiation Measurements, 32: 57-73.
  • 23. Neal A., Pontee N.I., Pye K., Richards J. (2002) Internal structure of mixed-sand-and-gravel beach deposits revealed using ground-penetrating radar. Sedimentology, 49: 789-804.
  • 24. Oppo D.W., McManus J.F., Cullen J.L. (2003) Deepwater variability in the Holocene epoch. Nature, 422: 277-278.
  • 25. Ramos R., Freitas M.C., Bristow C.S., Andrade C., Hermozilha H., Grangeia C., Senos Matias M. (2011) Sedimentary architecture of the Santo André transverse dunes (Portugal) interpreted from ground-penetrating radar. Journal of Coastal Research, Special Issue, 57: 303-307.
  • 26. Reimann T., Tsukamoto S., Harff J., Osadczuk K., Frechen M. (2011) Reconstruction of Holocene coastal foredune progradation using luminescence dating - an example from the Świna barrier (southern Baltic Sea, NW Poland). Geomorphology, 132: 1-16.
  • 27. Reimer P.J., Baillie M.G.L., Bard E., Bayliss A., Beck J.W., Blackwell P.G., Bronk Ramsey C., Buck C.E., Burr G.S., Edwards R.L., Friedrich M., Grootes P.M., Guilderson T.P., Hajdas I., Heaton T.J., Hogg A.G., Hughen K.A., Kaiser K.F., Kromer B., McCormac F.G., Manning S.W., Reimer R.W., Richards D.A., Southon J.R., Talamo S., Turney C.S.M., van der Plicht J., Weyhenmeyer C.E. (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0-50,000 years cal BP. Radiocarbon, 51 (4): 1111-1150.
  • 28. Rosentau A., Vassiljev J., Hang T., Saarse L., Kalm V. (2009) Development of the Baltic Ice Lake in eastern Baltic. Quaternary International, 206: 16-23.
  • 29. Rosentau A., Muru M., Kriiska A., Subetto D.A., Vassiljev J., Hang T., Gerassimov D., Nordqvist K., Ludikova A., Lougas L., Raig H., Kihno K., Aunap R., Letyka N. (2013) Stone Age settlement and Holocene shore displacement in the Narva-Luga Klint Bay area, eastern Gulf of Finland. Boreas: DOI: 10.1111 /bor. 12004
  • 30. Saarse L., Vassiljev J., Miidel A. (2003) Simulation of the Baltic Sea shorelines in Estonia and neighbouring areas. Journal of Coastal Research, 19 (2): 261-268.
  • 31. Sandgren P., Subetto D.A., Berglund B.E., Davydova N.N., Savelieva L.A. (2004) Mid-Holocene Littorina Sea transgresisions based on stratigraphic studies in coastal lakes of NW Russia. GFF, 126: 363-380.
  • 32. Seppä H., Bjune A.E., Telford R.J., Birks H.J.B., Veski S. (2009) Last nine-thousand years of temperature variability in Northern Europe. Climate of the Past, 5: 523-535.
  • 33. Sommer R.S., Lindqvist C., Persson A., Bringsøe H., Rhodin A.G., Schneeweiss N., Sirok P., Bachmann L., Fritz U. (2009) Unexpected early extinction of the European pond turtle (Emys orbicularis) in Sweden and climatic impacts on its Holocene range. Molecular Ecology, 18: 1252-1262.
  • 34. Vollweiler N., Scholz D., Mühlinghaus C., Mangini A., Spötl C. (2006) A precisely dated climate record for the last 9 kyr from three high alpine stalagmites, Spannagel Cave, Austria. Geophysical Research Letters, 33: L20703, doi:10.1029/2006GL027662
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4141fc5-2f61-4108-87eb-b9c2d84f57a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.