Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
In this study, a 10 nm Al2O3 layer was deposited on the p-type gallium nitride (p-GaN) layer using thermal atomic layer deposition to form a metal–oxide–semiconductor high-electron mobility transistor (MOS-HEMT), designed to achieve lower gate leakage current. For comparison, a conventional p-GaN gate HEMT with an ohmic gate contact was employed. Transfer length method analysis of device resistance confirmed a reliable ohmic contact on the source/drain, with a low sheet resistance (R sh) indicating a high-density two-dimensional electron gas in the access region, unaffected by the residual p-GaN etching process. To further explore the role of post-deposition annealing (PDA) in MOS-HEMTs, the characteristics of devices with and without PDA treatment were evaluated. Our conventional ohmic gate device exhibited excellent enhancement-mode (E-mode) characteristics, with all devices demonstrating low reverse gate leakage below 1 × 10⁻6 mA/mm. Compared to ohmic-gate HEMTs, PDA-treated devices showed reduced gate leakage and improved reliability, achieving a 10-year lifetime at 7.2 V through time-dependent gate breakdown analysis, despite reduced ON-state performance. We analyzed the differences among the three devices based on their respective gate leakage currents.
Wydawca
Czasopismo
Rocznik
Tom
Strony
143--152
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
autor
- Program on Semiconductor Manufacturing Technology, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung UniversityTainan City, Taiwan
autor
- Department of Microelectronics Engineering, National Kaohsiung University of Science and Technology Kaohsiung City 81157, Taiwan
autor
- Institute of Microelectronics & Department of Electrical Engineering, National Cheng Kung University Tainan City, Taiwan
Bibliografia
- [1] He, J., Cheng, W.C., Wang, Q., Cheng, K., Yu, H., Chai, Y., Recent advances in GaN‐based power HEMT devices, Adv. Electron. Mater., 2021, 7: 2001045
- [2] Dreyer, C.E., Janotti, A., Van de Walle, C.G., Effects of strain on the electron effective mass in GaN and AlN, Appl. Phys. Lett., 2013, 102: 142105
- [3] Roccaforte, F., Fiorenza, P., Greco, G., Nigro, R.L., Giannazzo, F., Iucolano, F., et al., Emerging trends in wide band gap semiconductors (SiC and GaN) technology for power devices, Microelectron. Eng., 2018, 187: 66
- [4] Lin, Y.C., Chang, C.H., Li, F.M., Hsu, L.H., Chang, E.Y., Evaluation of TiN/Cu gate metal scheme for AlGaN/GaN high-electron-mobility transistor application, Appl. Phys. Express, 2013, 6: 091003
- [5] Chen, K.J., Häberlen, O., Lidow, A., Lin Tsai, C., Ueda, T., Uemoto, Y., et al., GaN-on-Si power technology: Devices and applications, IEEE Trans. Electron. Devices, 2017, 64: 779
- [6] Meneghini, M., Hilt, O., Wuerfl, J., Meneghesso, G., Technology and reliability of normally-off GaN HEMTs with p-type gate, Energies, 2017, 10: 153
- [7] Greco, G., Iucolano, F., Roccaforte, F., Review of technology for normally-off HEMTs with p-GaN gate, Mater. Sci. Semicond. Process., 2018, 78: 96
- [8] Qi, Y., Zhu, Y., Zhang, J., Lin, X., Cheng, K., Jiang, L., et al., Evaluation of LPCVD SiN x gate dielectric reliability by TDDB measurement in Si-substrate-based AlGaN/GaN MIS-HEMT, IEEE Trans. Electron. Devices, 2018, 65: 1759
- [9] Wu, T.L., Marcon, D., De Jaeger, B., Van Hove, M., Bakeroot, B., Stoffels, S., et al., Time dependent dielectric breakdown (TDDB) evaluation of PE-ALD SiN gate dielectrics on AlGaN/GaN recessed gate D-mode MIS-HEMTs and E-mode MIS-FETs, In 2015 IEEE International Reliability Physics Symposium, 2015, p. 6C. 4.1
- [10] Vandendaele, W., Leurquin, C., Lavieville, R., Jaud, M.A., Viey, A.G., Gwoziecki, R., et al., Reliability of GaN MOSc-HEMTs: From TDDB to threshold voltage instabilities, In 2023 IEEE International Reliability Physics Symposium (IRPS), 2023, p. 1
- [11] Chen, J., Hua, M., Wei, J., He, J., Wang, C., Zheng, Z., et al., OFF-state drain-voltage-stress-induced V TH instability in Schottky-type p-GaN gate HEMTs, IEEE J. Emerg. Sel. Top. Power Electron., 2020, 9: 3686
- [12] Sarkar, A., Haddara, Y.M., Modeling of forward gate leakage current for normally off pGaN/AlGaN/GaN HEMTs, Solid-State Electron., 2022, 196: 108420
- [13] Huang, K.N., Lin, Y.C., Wu, C.Y., Lee, J.H., Hsu, C.C., Yao, J.N., et al., Study of p-GaN gate MOS-HEMT with Al2O3 insulator for high-power applications, J. Electron. Mater., 2023, 52: 2865
- [14] Liu, Z.H., Ng, G.I., Arulkumaran, S., Maung, Y.K.T., Teo, K.L., Foo, S.C., et al., High microwave-noise performance of AlGaN/GaN MISHEMTs on Silicon With Al2O3 Gate insulator grown by ALD, IEEE Electron. Device Lett., 2009, 31: 96
- [15] Azam, F., Tanneeru, A., Lee, B., Misra, V., Engineering a unified dielectric solution for AlGaN/GaN MOS-HFET gate and access regions, IEEE Trans. Electron. Devices, 2020, 67: 881
- [16] Rrustemi, B., Piotrowicz, C., Jaud, M.A., Triozon, F., Vandendaele, W., Mohamad, B., et al., Effect of doping on Al2O3/GaN MOS capacitance, Solid-State Electron., 2022, 194, 108356
- [17] Glaser, C.E., Binder, A.T., Yates, L., Allerman, A.A., Feezell, D.F., Kaplar, R.J., Analysis of ALD dielectric leakage in bulk GaN MOS devices, In 2021 IEEE 8th Workshop on Wide Bandgap Power Devices and Applications (WiPDA), 2021, p. 268
- [18] Lükens, G., Hahn, H., Kalisch, H., Vescan, A., Self-aligned process for selectively etched p-GaN-gated AlGaN/GaN-on-Si HFETs, IEEE Trans. Electron. Devices, 2018, 65: 3732
- [19] Baby, R., Reshma, K., Chandrasekar, H., Muralidharan, R., Raghavan, S., Nath, D.N., Study of TaN-gated p-GaN E-mode HEMT, IEEE Trans. Electron. Devices, 2023, 70: 1607
- [20] Dai, X., Jiang, Q., Huang, S., Feng, C., Ji, Z., Gao, X., et al., Island-ohmic-PGaN gate HEMT: Toward steep subthreshold swing and enhanced threshold stability, IEEE Electron. Device Lett., 2024, 45: 988
- [21] Millesimo, M., Fiegna, C., Posthuma, N., Borga, M., Bakeroot, B., Decoutere, S., et al., High-temperature time-dependent gate breakdown of p-GaN HEMTs, IEEE Trans. Electron. Devices, 2021, 68: 5701
- [22] Taube, A., Kamiński, M., Ekielski, M., Kruszka, R., Jankowska-Śliwińska, J., Michałowski, P.P., et al., Selective etching of p-GaN over Al0. 25Ga0. 75N in Cl2/Ar/O2 ICP plasma for fabrication of normally-off GaN HEMTs, Mater. Sci. Semicond. Process., 2021, 122: 105450
- [23] Krishna, A., Investigation of p-Type GaN/AlGaN superlattices: defining a pathway towards low sheet resistance for p-channel III-nitride devices, In University of California, Santa Barbara, 2022
- [24] Yue, Y.Z., Hao, Y., Zhang, J.C., AlGaN/GaN MOS-HEMT with stack gate HfO2/Al2O3 structure grown by atomic layer deposition, In 2008 IEEE Compound Semiconductor Integrated Circuits Symposium, 2008, p. 1
- [25] Ibbetson, J.P., Fini, P.T., Ness, K.D., DenBaars, S.P., Speck, J.S., Mishra, U.K., Polarization effects, surface states, and the source of electrons in AlGaN/GaN heterostructure field effect transistors, Appl. Phys. Lett., 2000, 77: 250
- [26] Stockman, A., Canato, E., Tajalli, A., Meneghini, M., Meneghesso, G., Zanoni, E., et al., On the origin of the leakage current in p-gate AlGaN/GaN HEMTs, In 2018 IEEE international reliability physics symposium (IRPS), 2018, p. 4B. 5
- [27] Ahmed, N., Dutta, G., Physics-based models of 2DEG density and gate capacitance for p-GaN/AlGaN/GaN heterostructure, IEEE Trans. Electron. Devices, 2024, 71, 4093
- [28] Liu, A.C., Tu, P.T., Chen, H.C., Lai, Y.Y., Yeh, P.C., Kuo, H.C., Improving performance and breakdown voltage in normally-off GaN recessed gate MIS-HEMTs using atomic layer etching and gate field plate for high-power device applications, Micromachines, 2023, 14, 1582
- [29] Liu, W., Yu, G., Zhou, J., Yu, Z., Wei, X., Tang, W., et al., Implementation of recessed gate normally off GaN metal–insulator–semiconductor high electron mobility transistors by electrodeless photoelectrochemical etching, ACS Appl. Electron. Mater., 2022, 4: 897
- [30] Zhu, M., Ma, J., Nela, L., Erine, C., Matioli, E., High-voltage normally-off recessed tri-gate GaN power MOSFETs with low on-resistance, IEEE Electron. Device Lett., 2019, 40: 1289
- [31] Chen, Y.H., Ohori, D., Aslam, M., Lee, Y.J., Li, Y., Samukawa, S., Enhancing the performance of E-mode AlGaN/GaN HEMTs with recessed gates through low-damage neutral beam etching and post-metallization annealing, IEEE Open. J. Nanotechnol., 2023, 4: 150
- [32] Greco, G., Iucolano, F., Di Franco, S., Bongiorno, C., Patti, A., Roccaforte, F., Effects of annealing treatments on the properties of Al/Ti/p-GaN interfaces for normally OFF p-GaN HEMTs, IEEE Trans. Electron. Devices, 2016, 63: 2735
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d4118913-a70f-48fc-9a97-639dd84948e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.