PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected aspects of blood flow simulations in arteries

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This article discusses selected aspects of modelling blood flow in the arteries. The method of reproducing the variable-intime geometry of coronary arteries is given based on a sequence of medical images of different resolutions. Within the defined shapes of the arteries, a technique of generation of numerical meshes of the same topology is described. The boundary conditions and non-Newtonian rheological models used in blood flow are discussed, as well as the description of blood as a multiphase medium. The work also includes a discussion of tests on the phantom of the carotid artery for the accuracy of measurements made using ultrasonography.
Rocznik
Strony
145--153
Opis fizyczny
Bibliogr. 33 poz., rys.
Twórcy
  • Silesian University of Technology, Department of Thermal Technology, Faculty of Energy and Environmental Engineering, Konarskiego 22, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Thermal Technology, Faculty of Energy and Environmental Engineering, Konarskiego 22, 44-100 Gliwice, Poland
  • Silesian University of Technology, Department of Thermal Technology, Faculty of Energy and Environmental Engineering, Konarskiego 22, 44-100 Gliwice, Poland
Bibliografia
  • [1] Morris, P.D., Narracott, A., von Tengg-Kobligk, H., Silva Soto, D.A., Hsiao, S., Lungu, A., Evans, P., Bressloff, N.W., Lawford, P.V., Hose, D.R., & Gunn, J. P. (2016). Computational fluid dynamics modelling in cardiovascular medicine. Heart (British Cardiac Society), 102(1), 18–28. doi: 10.1136/heartjnl-2015-308044
  • [2] Gijsen, F., Katagiri, Y., Barlis, P., Bourantas, C., Collet, C., Coskun, U., Daemen, J., Dijkstra, J., Edelman, E., Evans, P., van der Heiden, K., Hose, R., Koo, B.-K., Krams, R., Marsden, A., Migliavacca, F., Onuma, Y., Ooi, A., Poon, E., & Serruys, P. (2019). Expert recommendations on the assessment of wall shear stress in human coronary arteries: existing methodologies, technical considerations, and clinical applications. European Heart Journal, 40(41), 3421–3433. doi: 10.1093/eurheartj/ehz551
  • [3] Hellevik L.R., & Sturdy J. https://www.ntnu.no/starfish [accessed 20 Nov. 2023].
  • [4] Zhou, M., Yu, Y., Chen, R., Liu, X., Hu, Y., Ma, Z., Gao, L., Jian, W., & Wang, L. (2023). Wall shear stress and its role in atherosclerosis. Frontiers in Cardiovascular Medicine, 10, 1083547. doi: 10.3389/ fcvm.2023.1083547
  • [5] Malek, A.M. (1999). Hemodynamic shear stress and its role in atherosclerosis. JAMA: The Journal of the American Medical Association, 282(21), 2035. doi: 10.1001/jama.282.21.2035
  • [6] Katz, S., Caiazzo, A., Moreau, B., Wilbrandt, U., Brüning, J., Goubergrits, L., & John, V. (2023). Impact of turbulence modeling on the simulation of blood flow in aortic coarctation. International Journal for Numerical Methods in Biomedical Engineering, 39(5), 3695. doi: 10.1002/cnm.3695
  • [7] Bordones, A.D., Leroux, M., Kheyfets, V.O., Wu, Y.A., Chen, C.Y., & Finol, E.A. (2018). Computational fluid dynamics modeling of the human pulmonary arteries with experimental validation. Annals of Biomedical Engineering, 46(9), 1309–1324. doi:10.1007/s10439-018-2047-1
  • [8] Taylor, C.A., Hughes, T.J.R., & Zarins, C.K. (1998). Finite element modeling of blood flow in arteries. Computer Methods in Applied Mechanics and Engineering, 158(1–2), 155–196. doi:10.1016/s0045-7825(98)80008-x
  • [9] Gharahi, H., Zambrano, B.A., Zhu, D.C., DeMarco, J.K., & Baek, S. (2016). Computational fluid dynamic simulation of human carotid artery bifurcation based on anatomy and volumetric blood flow rate measured with magnetic resonance imaging. International Journal of Advances in Engineering Sciences and Applied Mathematics, 8(1), 46–60. doi: 10.1007/s12572-016-0161-6
  • [10] Decroocq, M., Frindel, C., Rougé, P., Ohta, M., & Lavoué, G. (2023). Modeling and hexahedral meshing of cerebral arterial networks from centerlines. Medical Image Analysis, 89, 102912.doi: 10.1016/j.media.2023.102912
  • [11] Athani, A., Ghazali, N.N.N., Badruddin, I.A., Kamangar, S., Anqi, A.E., & Algahtani, A. (2022). Investigation of two-way fluid-structure interaction of blood flow in a patient-specific left coronary artery. Bio-Medical Materials and Engineering, 33(1),13–30. doi: 10.3233/bme-201171
  • [12] Yushkevich, P.A., Piven, J., Hazlett, H.C., Smith, R.G., Ho, S., Gee, J.C., & Gerig, G. (2006). User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability. NeuroImage, 31(3), 1116–1128. doi:10.1016/j.neuroimage.2006.01.015
  • [13] Avants, B.B., Tustison, N.J., Song, G., Cook, P.A., Klein, A., & Gee, J.C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. NeuroImage, 54(3), 2033–2044. doi: 10.1016/j.neuroimage.2010.09.025
  • [14] Systems 3D. http://www.geomagic.com/en/products/design/overview [accessed 25 Nov. 2023].
  • [15] Ansys.com. Academic Research Fluent, Release 2021R2. 2021.
  • [16] Korteweg, D.J. (1878). Ueber die Fortpflanzungsgeschwindigkeit des Schalles in elastischen Röhren. Annalen Der Physik, 241(12), 525–542. doi:10.1002/andp.18782411206
  • [17] Sinek, A., Mesek, M., Rojczyk, M., Juszczyk, J., Adamczyk, W. P., Sturdy, J., Melka, B., Golda, A., Nowok, M., Ostrowski, Z., & Białecki, R. (2023). Evaluating the precision and reproducibility of non-invasive deformation measurements in an arterial phantom. Measurement: Journal of the International Measurement Confederation, 216(112904), 112904. doi: 10.1016/j.measurement.2023.112904
  • [18] Hellmuth R. https://commons.wikimedia.org/w/index.php?curid=54810155 [accessed 25 Nov. 2023].
  • [19] Painter, P.R., Edén, P., & Bengtsson, H.U. (2006). Pulsatile blood flow, shear force, energy dissipation and Murray’s Law. Theoretical Biology & Medical Modelling, 3, 31. doi: 10.1186/1742-4682-3-31
  • [20] Zarins, C.K., Zatina, M.A., Giddens, D.P., Ku, D.N., & Glagov, S. (1987). Shear stress regulation of artery lumen diameter in experimental atherogenesis. Journal of Vascular Surgery, 5(3), 413-420. https://pubmed.ncbi.nlm.nih.gov/3509594
  • [21] Olufsen, M.S., Peskin, C.S., Kim, W.Y., Pedersen, E.M., Nadim, A., & Larsen, J. (2000). Numerical simulation and experimental validation of blood flow in arteries with structured-tree outflow conditions. Annals of Biomedical Engineering, 28(11),1281-1299. doi: 10.1114/1.1326031
  • [22] Vignon-Clementel, I.E., Figueroa, C.A., Jansen, K.E., & Taylor, C.A. (2006). Outflow boundary conditions for three-dimensional finite element modeling of blood flow and pressure in arteries. Computer Methods in Applied Mechanics and Engineering,195(29–32), 3776–3796. doi: 10.1016/j.cma.2005.04.014
  • [23] Adji, A., Hirata, K., & O’Rourke, M.F. (2006). Clinical use of indices determined non-invasively from the radial and carotid pressure waveforms. Blood Pressure Monitoring, 11(4), 215-221. doi: 10.1097/01.mbp.0000218001.50333.b7
  • [24] Nelson, M.R., Stepanek, J., Cevette, M., Covalciuc, M., Hurst, R.T., & Tajik, A.J. (2010). Noninvasive measurement of central vascular pressures with arterial tonometry: Clinical revival of the pulse pressure waveform? Mayo Clinic Proceedings. Mayo Clinic, 85(5), 460–472. doi: 10.4065/mcp.2009.0336
  • [25] Ku, D.N., Giddens, D.P., Zarins, C.K., & Glagov, S. (1985). Pulsatile flow and atherosclerosis in the human carotid bifurcation. Positive correlation between plaque location and low oscillating shear stress. Arteriosclerosis (Dallas, Texas), 5(3), 293–302. doi:10.1161/01.atv.5.3.293
  • [26] Melka, B., Psiuk-Maksymowicz, K, Borys, D., Ostrowski, Z., Rojczyk, M., Gracka, M., Adamczyk, W.P., & Białecki, R.A. (2023). Numerical modelling of myocardial bridge covering dynamic shape of the human coronary artery (Book of Abstracts,pp. 87). XXVII Polish Conference on Biocybernetics and Biomedical Engineering, 2729 September, Lodz, Poland.
  • [27] Nader, E., Skinner, S., Romana, M., Fort, R., Lemonne, N., Guillot, N., Gauthier, A., Antoine-Jonville, S., Renoux, C., HardyDessources, M.D., Stauffer, E., Joly, P., Bertrand, Y., & Connes, P. (2019). Blood rheology: Key parameters, impact on blood flow, role in sickle cell disease and effects of exercise. Frontiers in Physiology, 10, . doi: 10.3389/fphys.2019.01329
  • [28] Wajihah, S.A., & Sankar, D.S. (2023). A review on non-Newtonian fluid models for multi-layered blood rheology in constricted arteries. Archive of Applied Mechanics, 93(5), 1771–1796. doi:10.1007/s00419-023-02368-6
  • [29] Abbasian, M., Shams, M., Valizadeh, Z., Moshfegh, A., Javadzadegan, A., & Cheng, S. (2020). Effects of different non-Newtonian models on unsteady blood flow hemodynamics in patientspecific arterial models with in-vivo validation. Computer Methods and Programs in Biomedicine, 186(105185), 105185. doi:10.1016/j.cmpb.2019.105185
  • [30] Bigaj, K., Rojczyk, M., Wasilewski, J., Melka, B., Ostrowski, Z., Gracka, M., Adamczyk, W., & Białecki, R. (2023). CFD assessment of hemodynamics in coronary arteries using three rheological models (in Polish). Proceedings of the Polish Congress of Rheology, 18-20 September, Kraków-Wieliczka, Poland.
  • [31] Liu, J., Yu, F., & Zhang, Y. (2020). MP-PIC simulation of blood cell movement through a LAD with high stenosis. Powder Technology, 361, 448–454. doi: 10.1016/j.powtec.2019.05.076
  • [32] Melka, B., Adamczyk, W.P., Rojczyk, M., Nowak, M.L., Gracka, M., Nowak, A.J., Golda, A., Bialecki, R.A., & Ostrowski, Z. (2019). Numerical investigation of multiphase blood flow coupled with lumped parameter model of outflow. International Journal of Numerical Methods for Heat and Fluid Flow, 30(1),228–244. doi: 10.1108/hff-04-2019-0279
  • [33] Farina, A., Fasano, A., & Rosso, F. (2023). A theoretical model for the Fåhræus effect in medium–large microvessels. Journal of Theoretical Biology, 558, 111355. doi: 10.1016/j.jtbi.2022.111355
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d40dbe51-5260-42a3-9c59-7101b9eea9ff
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.